Python Multiprocessing on the FASRC
Clusters

s HARVARD FAS Research Computing

Division of Science

2 UNIVERSITY https://rc.fas.harvard.edu

Learning Objectives

. Serial Processing

- Why use Multiprocessing in Python?

. Optimizing cluster usage variables for multiprocessing
. Basic process-based parallelism

. Controlling utilization with pooling

. Accelerating your code with numpy

. Other helpful tools & training

sare HARVARD FAS Research Computing

Division of Science

€ UNIVERSITY https://rc.fas.harvard.edu

Serial Processing - What is it & When to use?

o Default mode of Python
o Tasks executed one after the other, in a strict sequence
e Easy to implement & understand

o Lots of very short operations &/or trivial computations
o Anything where setup and teardown of processes would slow down

execution
o Ex: Working with I/O on small files where the overhead of spawning threads or
processes is higher

e Code has dependencies between tasks

o But inefficient for computationally intensive tasks; dealing with large
datasets

s HARVARD FAS Research Computing

Division of Science

¥ UNIVERSITY https://rc.fas.harvard.edu

Accelerating Your Python - Parallel Processing

= Multiple tasks executed simultaneously, utilizing multiple cores

= Achieve faster execution times by dividing workload

= Require synchronization & communication between processes or
precaution between threads using global interpreter lock (GIL)

= Process-based
. Separate processes, each with their own memory & Python interpreter => avoids GIL
. Harder to share objects between processes

= I hread-based

. Threads share same memory space
. Could write to the same memory at the same time => needs GIL
m https://medium.com/@bfortuner/python-multithreading-vs-multiprocessing-73072ce5600b
https://www.python-engineer.com/courses/advancedpython/15-thread-vs-process/

4

https://medium.com/@bfortuner/python-multithreading-vs-multiprocessing-73072ce5600b
https://www.python-engineer.com/courses/advancedpython/15-thread-vs-process/

s HARVARD FAS Research Computing

E¥ UNIVERSITY

Division of Science
https://rc.fas.harvard.edu

MultiProcessing

Multiprocessing - Process-based parallelism
. Ability of a system to run multiple processors at one time

Allows several processes to run in parallel

Multiprocessing module allocates tasks to different processors and makes
better use of a multi-core machine

No shared memory means better isolation between tasks, reducing the risk
of data corruption

Amplifies program efficiency & resource utilization
multiprocessing — Process-based parallelism — Python 3.12.4 documentation

https://medium.com/@surve.aasim/python-process-based-parallelization-3f91645ac4cb

https://docs.python.org/3/library/multiprocessing.html
https://medium.com/@surve.aasim/python-process-based-parallelization-3f91645ac4cb

e HARVARD FAS Research Computing

Division of Science

¥ UNIVERSITY https://rc.fas.harvard.edu

Multithreading - Thread-based Parallelism

Pros:

o Threads are lightweight execution units within a process
o Share memory making communication between threads efficient

e Good for 10 bound tasks

Cons:

o Must manage to avoid race conditions, synchronization issues

o Python's Global Interpreter Lock (GIL) limits the effectiveness of
threads in CPU bound tasks by preventing the execution of python
bytecode simultaneously

FAS Research Computing
mm HARVARD Division of Science

2 UNIVERSITY https://rc.fas.harvard.edu

Multiprocessing vs Multithreading

Multiprocessing is parallelism/doing multiple Multithreading is concurrency/dealing with
things at the same time. multiple things at the same time.

Multiprocessing is for increasing speed Multithreading is for hiding latency

Multiprocessing is best for computations Multithreading is best for 10

e Multithreading: 1 thread running at a time in a python process
e Multiprocessing: For CPU heavy tasks, n process=n cores,
never more

(% From Multithreading vs. Multiprocessing in Python (very informative)

https://engineering.contentsquare.com/2018/multithreading-vs-multiprocessing-in-python/

2z HARVARD FAS Research Computing

Division of Science
https://rc.fas.harvard.edu

E¥ UNIVERSITY

Software Based Multiprocessing vs Python Coding

o Software with multiprocessing options:
o May be limited in configuration variables and thus performance
o Is probably just threading

o See significant performance gains writing your own Python
multiprocessing code

o Tailor parallel execution to your needs
o Process data efficiently
o Control process communication
o Handle errors and logging

o« Community support around Python multiprocessing in guides,
manuals, and books
e Submit your slurm job and walk away

2z HARVARD FAS Research Computing

Division of Science

¥ UNIVERSITY https://rc.fas.harvard.edu

https://docs.rc.fas.harvard.edu/kb/training-materials/

Training Material

Login to Cannon
ssh <username>@login.rc.fas.harvard.edu

Check current location & change if desired for this training: pwd
cd <desired-location>

Clone FASRC User Codes repository:
https://github.com/fasrc/User Codes/tree/master

SSH - git clone git@github.com:fasrc/User Codes.git
HTTPS - git clone https://github.com/fasrc/User Codes.git

Create a training folder & go to that folder:
mkdir python-training; cd python-training

Copy Python folders from the User Codes directory:
cp -r ../User Codes/Languages/Python

cp -r ../User Codes/Parallel Computing/Python/Python-Multiprocessing-Tutorial

https://github.com/fasrc/User_Codes/tree/master
mailto:git@github.com
https://github.com/fasrc/User_Codes.git
https://docs.rc.fas.harvard.edu/kb/training-materials/

s HARVARD FAS Research Computing

Division of Science

€8 UNIVERSITY https://rc.fas.harvard.edu

Python Package Installation - Interactive

o Go to a compute node on the test partition:

salloc -p test --nodes=1 --cpus-per-task=2 --mem=12GB --time=01:00:00

o Create a vanilla mamba/conda environment (for multiprocessing exercise):

module load python
mamba create --prefix=/n/holylabs/LABS/<desired-folder>/multiproc env
python=3.11 -y

o Alternatively, if default SHOME is desired, then do following instead:

module load python
conda create --name multiproc env python=3.11 -y

o See Python Package Installation

10
e

https://docs.rc.fas.harvard.edu/kb/python-package-installation/

s HARVARD FAS Research Computing

o5 Division of Science
< UNIVERSITY https://rc.fas.harvard.edu

Python Package Installation

o Activate conda/mamba environment:

mamba activate /n/holylabs/LABS/<desired-folder>/multiproc env

o Orif sHOME USEd, then: [mampa activate multiproc env

o Install relevant python packages (Mamba recommended):

mamba install numpy pandas matplotlib -y
pip install jupyterlab swifter

o Always pip install inside a conda environment to avoid package conflicts

https://docs.rc.fas.harvard.edu/kb/python-package-installation/#Pip Installs
Deactivate the environment: [mamba deactivate

11

https://docs.rc.fas.harvard.edu/kb/python-package-installation/#Pip_Installs

mmmm HARVARD FAS Research Computing

Division of Science

¥ UNIVERSITY https://rc.fas.harvard.edu

Python Package Installation - sbatch

https://github.com/fasrc/User Codes/tree/master/Languages/Python/Example?2

#!/bin/bash

Go to Multiprocessing Tutorial #SBATCH —J multi_proc # job name

cd Python—Multiprocessing—Tutorial #SBATCH -0 multi_proc.out # standard output file
#SBATCH —-e multi_proc.err # standard error file

Submit jCDk) #SBATCH —-cpus—per-task=1 # number of cores

#SBATCH ——partition=test # partition
#SBATCH —-time=0-01:00 # time in D-HH:MM
#SBATCH ——mem=10G # memory in GB

sbatch run multiproc.sbatch

Load required modules

module load python

multiprocbuild_env.sh: bash script for
creating the multiproc_env mamba # Build the environment

. sh multiprocbuild_env.sh
environment

Activate the environment
mamba activate multiproc_env

Install pip packages
pip install jupyterlab swifter 12

https://github.com/fasrc/User_Codes/tree/master/Languages/Python/Example2

FAS Research Computing
Division of Science
https://rc.fas.harvard.edu

Multiprocessing - Process-based Parallelism - Basic

mg HARVARD

E¥ UNIVERSITY

Multiprocessing in Python - MachinelearningMastery.com

Two functions declared to execute
print statements after sleeping for
2 & 3 seconds, resp.

3 processes created using
multiprocessing.Process inside main()

The Process() utilizes target
argument to run target process

Processes are run using start()

Use join() to run & exit a processes
before the main program process

|mport multiprocessing
import time
def worker(): ¢———
name = multiprocessing.current_process().name
print(name, 'Starting')
time.sleep(2) -w—
print(name, 'Exiting')
def my_service(): ¢————
name = multiprocessing.current_process().name
print(name, 'Starting')
time.sleep(3) €«——
print(name, 'Exiting')

/

service = multiprocessing.Process(name='my_service', target=my_service)

if _name__=='_main__"'

worker 1 = multiprocessing.Process(name="'worker 1', target=worker)
worker 2 = multiprocessing.Process(target=worker)

worker_1.start() «——

worker_2.start()

service.start()

13

https://machinelearningmastery.com/multiprocessing-in-python/

e HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Multiprocessing in Python

o On the cluster, difference between number of CPUs allocated to the job vs
total number of CPUs available on the node

o Go to a compute node on the test partition requesting 10 cores:

salloc -p test --nodes=1 --cpus-per-task=10 —--mem=12GB --time=01:00:00

o See total number of cores available on the node:

scontrol show node <nodename>

o Execute cpu-count.py to see which command gives you the number of

cores a”Ocated to your jOb: cd Python-Multiprocessing-Tutorial
python cpu-count.py

o See How to find out the number of CPUs using python - Stack Overflow

14
e

https://stackoverflow.com/questions/1006289/how-to-find-out-the-number-of-cpus-using-python/55423170#55423170

e HARVARD FAS Research Computing

Division of Science

¥ UNIVERSITY https://rc.fas.harvard.edu

Multiprocessing - Pooling

import multiprocessing

o Run 1000 processes together - may not import time
be possible import os
o Create a process pool to limit number of def cube(x)

return x**3

processes that can be run at a time

if _name__ ==' main_'

o Function declared to return the cube

The Process class

o The multiprocessing.Process doesn’t work P | i i |
processes = [multiprocessing.Process(target=cube, args=(x,)) for x in
with p.start() & p.join(), would need an range(1,len(os.sched_getaffinity(0)))]
.start() f i
output queue as well. But faster than Poo/() | Psertiforpin processes

result process = [p.join() for p in processes]

o The multiprocessing.Pool module #Thepooicass

easier to use, returns ordered result using pool =

multiprocessing.Pool(processes=len(os.sched_getaffinity(0)))
pOO/'map()’ & Causes |eSS Overhead result_pool = pool.maptqube, range(1,7en{os.sched_getaffinity(0)))]

o See Python multiprocessing: How to know to use Pool or Process? - Stack Overflow

https://stackoverflow.com/questions/31711378/python-multiprocessing-how-to-know-to-use-pool-or-process

e HARVARD FAS Research Computing

Division of Science
https://rc.fas.harvard.edu

Multiprocessing + Numpy with JupyterLab notebook

E¥ UNIVERSITY

o Using Multiprocessing along with Numpy to accelerate python program

o Go to OOD (Cannon or FASSE) & launch JupyterLab notebook on test with
e 52 CPUs
e gcc/12.2.0-fasrcO1 loaded as a module
e multiproc env loaded as a kernel
e |n python-training/Python-Multiprocessing-Tutorial

o Problem Statement:

e A sample data file has 4 columns and 1000 entries. Columns correspond to the time
a job was submitted, when it started, when it ended, and number of CPUs allocated.

e (Calculate the total number of CPUs in use by currently running jobs for every
submitted job

16
e

e HARVARD FAS Research Computing

Division of Science
https://rc.fas.harvard.edu

E¥ UNIVERSITY

Multiprocessing + Numpy

Convert numerical columns to Numpy arrays.
Declare a function to calculate CPUs utilized: calculate cpus utilized()

o Multiple methods utilized for the calculation:
e Use the function over each submitted-job entry
e Pandas apply()
e swifter.apply()
e Using Numpy arrays & for-loop
e Using Multiprocessing with a pool of processes = #CPUs requested for OOD job

o Run the notebook to see which method gives the fastest result
Fastest: Combination of Numpy and Multiprocessing

17
e

sare HARVARD FAS Research Computing

Division of Science

2 UNIVERSITY https://rc.fas.harvard.edu

Accelerate Python - Other Tools

o Numba
e https://numba.pydata.org/

o Swifter

e Speed up your Pandas Processing with Swifter | by Cornellius
Yudha Wijaya | Towards Data Science

e GitHub - imcarpenter2/swifter: A package which efficiently
applies any function to a pandas dataframe or series in the
fastest available manner

o Dask

e https://www.dask.org/ 5
e

https://numba.pydata.org/
https://towardsdatascience.com/speed-up-your-pandas-processing-with-swifter-6aa314600a13
https://towardsdatascience.com/speed-up-your-pandas-processing-with-swifter-6aa314600a13
https://github.com/jmcarpenter2/swifter
https://github.com/jmcarpenter2/swifter
https://github.com/jmcarpenter2/swifter
https://www.dask.org/

sare HARVARD FAS Research Computing

Division of Science

2 UNIVERSITY https://rc.fas.harvard.edu

FASRC documentation

o FASRC docs: https://docs.rc.fas.harvard.edu/

o FASRC Python docs:
o https://docs.rc.fas.harvard.edu/kb/python/
« https://docs.rc.fas.harvard.edu/kb/python-package-installation/

o GitHub User_codes: https://github.com/fasrc/User_Codes/

o Getting help

Office hours: https://www.rc.fas.harvard.edu/training/office-hours/

e Ticket

o Portal: http://portal.rc.fas.harvard.edu/rcrt/submit_ticket (requires login)

o Email: rchelp@rc.fas.harvard.edu 19
e

https://docs.rc.fas.harvard.edu/
https://docs.rc.fas.harvard.edu/kb/python/
https://docs.rc.fas.harvard.edu/kb/python-package-installation/
https://github.com/fasrc/User_Codes/
https://www.rc.fas.harvard.edu/training/office-hours/
http://portal.rc.fas.harvard.edu/rcrt/submit_ticket
mailto:rchelp@rc.fas.harvard.edu

o HARVARD FAS Research Computing

Division of Science

2 UNIVERSITY https://rc.fas.harvard.edu

Upcoming Trainings

Training calendar: https://www.rc.fas.harvard.edu/upcoming-training/

FASRC: Managing Research Data at FASRC

About: How to incorporate data management concepts into your research workflows at each
stage of the data lifecycle, from data planning and data generation to data storage and cleanup

When: Oct 23,12 -1PM

Informatics: Introduction to R (in-person)
When: Oct 21, 9:30am - 12:30 PM

https://www.rc.fas.harvard.edu/upcoming-training/
https://www.rc.fas.harvard.edu/events/managing-research-data-at-fas/

e HARVARD FAS Research Computing

Division of Science

¥ UNIVERSITY https://rc.fas.harvard.edu

Training Session Evaluation

Please, fill out our training session evaluation. Your feedback is essential for
us to improve our trainings!!

https://tinyurl.com/FASRC-training E:EIE.:E
-

21

https://tinyurl.com/FASRC-training

Thank you :)
FAS Research Computing

