CentOS 7 to Rocky 8: How the new operating system will affect FASRC clusters
Content

- Why will FASRC clusters will move to Rocky 8?

- Partition changes
 - Public partitions will have a 3 day time limit
 - New intermediate partition to handle 3-14 day jobs
 - Unrestricted partition will be expanded

- Software changes
 - Software will need to be rebuilt
 - New strategy for Software

- Login nodes will have hard memory and cpu usage limits but no more pcull

- Test cluster information
Why move to Rocky 8?

- CentOS 7: non-commercial version of RedHat's Enterprise Linux (RHEL)
- CentOS is being discontinued by RedHat
- New development ceased at the end of 2021
 - potential security vulnerabilities
 - incompatibility with new software
- Rocky 8 Linux
 - created by original CentOS developers
 - good portion of HPC community is also adopting it -> more community support
Partition time limit changes

- Public partitions will have a 3 day time limit
- New intermediate partition to handle 3-14 day jobs
- Unrestricted partition will be expanded
Software changes

- Most software built on CentOS 7 will not work
- Rocky 8 software:
 - HeLmod (modules): only compilers, basic libraries, and a few software
 - Spack for most software installs
 - Singularity
 - Julia
 - Python
 - R with Spack
(cont.) Software changes

- Legacy CentOS 7 support
 - Singularity container with full compute node environment and CentOS 7 modules
 - CentOS 7 will not be maintained for the compute environment
 - Slurm support for CentOS 7 will be dropped with the next major Slurm upgrade
HeLmod (modules)

- Compilers: gcc, Intel, openmpi, cuda
- Basic libraries (e.g., HDF5, gsl, NetCDF)
- Very common libraries (e.g., R, python, Mamba, LAMMPS, GAMESS, GROMACS, CP2K, etc. but customization will be left to the user through spack)
- Commercial software

[jharvard@rockylogin ~]$ module load matlab
[jharvard@rockylogin ~]$ module list

Currently Loaded Modules:
 1) matlab/R2022b-fasrc01
(cont.) HeLmod (modules)

[jharvard@rockylogin ~]$ module spider gcc

gcc:
Description:
the GNU Compiler Collection

Versions:
gcc/10.2.0-fasrc01
gcc/12.2.0-fasrc01

[jharvard@rockylogin ~]$ module spider open

openmpi:
Description:
Full MPI-3.1 standards conformance

Versions:
openmpi/4.1.0-fasrc01
openmpi/4.1.4-fasrc01
(cont.) HeLmod (modules)

[jharvard@rockylogin ~]$ module load intel
[jharvard@rockylogin ~]$ module avail

------------------ /n/sw/helmod-rocky8/modulefiles/Comp/intel/23.0.0-fasrc01 -------------------
 intelmpi/2021.8.0-fasrc01 mpich/4.1-fasrc01 openmpi/4.1.4-fasrc01

-------------------------- /n/sw/helmod-rocky8/modulefiles/Core --------------------------------
 Anaconda2/2019.10-fasrc01 gmp/6.2.1-fasrc01 python/2.7.16-fasrc01
 IDL/8.7.2-fasrc01 gsl/2.7-fasrc01 python/3.10.9-fasrc01
 (D) Mambaforge/22.11.1-fasrc01 intel-mkl/23.0.0-fasrc01 rstudio/2023.03.0-fasrc01
 R/4.2.2-fasrc01 mathematica/12.1.1-fasrc01 sas/9.4-fasrc01
 cmake/3.25.2-fasrc01 matlab/R2022b-fasrc01 stata/17.0-fasrc01
 cuda/12.0.1-fasrc01 mpc/1.2.1-fasrc01 (L) vscode/1.76-fasrc01
 cudnn/8.8.0.121_cuda12-fasrc01 mpc/1.3.1-fasrc01 zlib/1.2.11-fasrc01
 flex/2.6.4-fasrc01 mpfr/4.1.0-fasrc01 (D) zlib/1.2.13-fasrc01
 gcc/10.2.0-fasrc01 mpfr/4.2.0-fasrc01 (D)
Spack

One-time setup

▪ Clone Spack repo in your lab storage (better performance than home dir)
▪ Source spack
▪ Install packages with Spack - some software can take a few hours to build

Job submission

▪ Source spack
▪ Load packages/software with Spack
▪ Run code
request interactive job
[jharrowd@rockylogin ~]$ salloc -p rocky --mem 12g -t 0-04:00 -c 8

use lab storage
[jharrowd@holy7c12104 ~]$ cd /n/holylabs/LABS/jharrowd_lab/Lab/software/

clone spack
[jharrowd@holy7c12104 software]$ git clone -c feature.manyFiles=true https://github.com/spack/spack.git
[jharrowd@holy7c12104 software]$ cd spack/
[jharrowd@holy7c12104 spack]$ git checkout releases/v0.19

source spack
[jharrowd@holy7c12104 spack]$. share/spack/setup-env.sh

install packages
[jharrowd@holy7c12104 spack]$ spack install bzip2 # install latest version
[jharrowd@holy7c12104 spack]$ spack install bzip2@1.0.8 # specify version
[jharrowd@holy7c12104 spack]$ spack install zlib@1.2.13%gcc@8.5.0 # specify version and compiler
#! /bin/bash

#SBATCH -J r_spacc # Job name
#SBATCH -c 1 # Number of cores (--cpus-per-task)
#SBATCH -t 0-00:10 # Runtime in D-HH:MM, minimum of 10 minutes
#SBATCH -p test # Partition to submit to
#SBATCH --mem=4g # Memory for all cores in GB (see also --mem-per-cpu)
#SBATCH -o myoutput_%j.out # File to which STDOUT will be written, %j inserts jobid
#SBATCH -e myerrors_%j.err # File to which STDERR will be written, %j inserts jobid

source spack
./n/holylabs/LABS/jharvard_lab/Users/jharvard/spack/share/spack/setup-env.sh

load spack packages
spack load r-codetools
spack load r-rgdal
spack load r-raster
spack load r-terra

run R code
Rscript --vanilla r_spacc_load_libs.R > r_spacc_load_libs.Rout
Singularity

- You can build containers
 - from existing container in SingularityCE container library
 - from existing container in Docker Hub
 - from SingularityCE definition file on Sylabs cloud
 - **NEW**: from SingularityCE definition file and `p root` directly on Cannon
use lab storage
[jharvard@holy7c12104 ~]$ cd /n/holylabs/LABS/jharvard_lab/Users/jharvard/software/

download julia and extract
[jharvard@holy7c12104 software]$ wget
https://julialang-s3.julialang.org/bin/linux/x64/1.8/julia-1.8.5-linux-x86_64.tar.gz
[jharvard@holy7c12104 software]$ tar xvfz julia-1.8.5-linux-x86_64.tar.gz

add julia to path
[jharvard@holy7c12104 julia-1.8.5]$ export
PATH=$PATH:/n/holylabs/LABS/jharvard_lab/Users/jharvard/software/julia-1.8.5/bin

[jharvard@holy7c12104 julia-1.8.5]$ julia

Documentation: https://docs.julialang.org
Type "?" for help, "]?" for Pkg help.
Version 1.8.5 (2023-01-08)
Official https://julialang.org/ release

julia>
Mamba replacing Anaconda: fast, robust, and cross-platform package manager

Python 3

[jharvard@rockylogin ~]$ module load python/3.10.9-fasrc01
[jharvard@rockylogin ~]$ module list

Currently Loaded Modules:
1) Mambaforge/22.11.1-fasrc01 2) python/3.10.9-fasrc01

Python 2

[jharvard@rockylogin ~]$ module load python/2.7.16-fasrc01
[jharvard@rockylogin ~]$ module list

Currently Loaded Modules:
1) Anaconda2/2019.10-fasrc01 2) python/2.7.16-fasrc01
Python and Mamba

load modules
[jharvard@holy7c12104 ~]$ module load python/3.10.9-fasrc01

create and activate mamba environment
[jharvard@holy7c12104 ~]$ mamba create -n python_env1 python=3.10 pip wheel
[jharvard@holy7c12104 ~]$ source activate python_env1

install packages
(python_env1)[jharvard@holy7c12104 ~]$ mamba install -y numpy

uninstall packages
(python_env1)[jharvard@holy7c12104 ~]$ mamba uninstall PACKAGE

deactivate environment
(python_env1)[jharvard@holy7c12104 ~]$ conda deactivate
[jharvard@holy7c12104 ~]$
R with Spack

Same as other software with Spack:

- One-time setup
 - Clone Spack repo in your lab storage (better performance than home dir)
 - Source spack
 - Install packages with Spack - some software can take a few hours to build

- Job submission
 - Source spack
 - Load packages/software with Spack
 - Run code
request interactive job
[jharvard@rockylogin ~]$ salloc -p rocky --mem 12g -t 0-04:00 -c 8

use lab storage
[jharvard@holy7c12104 ~]$ cd /n/holylabs/LABS/jharvard_lab/Lab/software/spack

source spack
[jharvard@holy7c12104 spack]$. share/spack/setup-env.sh

install R packages with spack
[jharvard@holy2c02302 spack]$ spack install r-rgdal

load spack packages
[jharvard@holy2c02302 spack]$ spack load r-rgdal

launch R and load libraries
[jharvard@holy2c02302 spack]$ R
> library(rgdal)
Legacy CentOS 7 support

- **Last resort option**
- Singularity image with CentOS 7
 - same environment of compute nodes
 - can load CentOS 7 modules
 - cannot submit jobs inside the container
 - can modify CentOS 7 image by building a new container based on CentOS 7 image

[jharvard@holy7c12102 ~]$ singularity exec
/n/singularity_images/FAS/centos7/compute-el7-noslurm-2023-03-29.sif /bin/bash
Singularity> module load gcc
Singularity> module load matlab
Singularity> module list

Currently Loaded Modules:
1) gmp/6.2.1-fasrc01 2) mpfr/4.1.0-fasrc01 3) mpc/1.2.1-fasrc01 4) gcc/12.1.0-fasrc01 5) matlab/R2022b-fasrc01
Partitions on Rocky 8 Test Cluster

<table>
<thead>
<tr>
<th>Partitions</th>
<th>Nodes</th>
<th>Cores per Node</th>
<th>CPU Core Types</th>
<th>Mem per Node (GB)</th>
<th>Time Limit</th>
<th>Max jobs</th>
<th>Max cores</th>
<th>MPI suitable</th>
<th>GPU capable</th>
</tr>
</thead>
<tbody>
<tr>
<td>rocky</td>
<td>36</td>
<td>48</td>
<td>Intel “Cascade Lake”</td>
<td>184</td>
<td>3 days</td>
<td>none</td>
<td>none</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>rocky_gpu</td>
<td>48</td>
<td>64</td>
<td>Intel “Ice Lake”</td>
<td>499</td>
<td>3 days</td>
<td>none</td>
<td>none</td>
<td>Yes</td>
<td>Yes (28 A100 5GB MIG)</td>
</tr>
</tbody>
</table>

For more information about partition:

$ sinfo -p rocky
$ scontrol show partition rocky
FASSE and Open OnDemand

FASRC is working on

- FASSE test cluster
- Open OnDemand/VDI both on Cannon and FASSE clusters
- Timeline: mid May
Request Help - Resources

- https://docs.rc.fas.harvard.edu/kb/support/
 - Rocky 8 Transition Guide
 - https://docs.rc.fas.harvard.edu/kb/rocky-8-transition-guide/
 - Portal
 - http://portal.rc.fas.harvard.edu/rcrt/submit_ticket
 - Email
 - rchelp@rc.fas.harvard.edu
 - Office Hours
 - Wednesday noon-3pm https://harvard.zoom.us/j/255102481
 - Consulting Calendar
 - https://www.rc.fas.harvard.edu/consulting-calendar/
 - Training Calendar
 - https://www.rc.fas.harvard.edu/upcoming-training/