
Using Containers on the
Cannon Cluster : Singularity/Apptainer

1
RCHelp: rchelp@rc.fas.harvard.edu

2

Objectives
● Why containers?

● Singularity/Apptainer container system

● How to run Singularity containers on Cannon:

○ Running simple containers on cpus and GPUs

○ Serial, multicore and MPI applications

○ Running graphics with hardware rendering

● How to build your own containers

○ building local images

○ remote builds

● Bind mounts

Why Containers?

Deploying Applications:
Building software is often a complicated business, particularly on a shared and multi-tenant
systems:

- HPC clusters have typically very specialized software stacks which might not adapt
well to general purpose applications.

- OS installations are streamlined.
Some applications might need dependencies that are not readily available and
complex to build from source.

- End users use Ubuntu or Arch, cluster typically use RHEL, or SLES, or other
specialized OS.
(... “>$ sudo apt-get install “ will not work)

- Researcher’s code often tends to comes from some old repos.
3

What problems are we trying to solve?

Portability and Reproducibility:
- Running applications on multiple systems typically needs replicating the

installations multiple times making it hard to keep consistency.

- It would be useful to publish the exact application used to run a calculation
for reproducibility or documentation purpose.

- As a user can I minimize the part of the software stack I have no control
on, to maximize reproducibility without sacrificing performance too much?

4

Containers: easi”er” software deployment

Containers provide a potential solution…. or at the very least can help.

- Easier software deployment:
Users can leverage on installation tools that do not need to be available natively on
the runtime host
(e.g. package managers of various linux distributions).

- Software can be built on a platform different from the exec hosts.

- they package in one single object all necessary dependencies.

- easy to publish and sign
- they are portable **

- … provided you run on a compatible architecture
- access to special hardware needs special libraries also inside the container ,

which at the moment limits portability
5

Types of Containers

6

Linux LXC

HPC Oriented :
- Compatible with WLM
- No privilege escalation needed

General purpose / microservice Oriented.

Singularity vocabulary

7

• Singularity or Apptainer – the software
– As in “Singularity 3.8” or “Apptainer 1.0”

• Image – a compressed, usually read-only file
– Example: “Build a Matlab 2021a image”

– Writable image: use --sandbox option

• Container
– The technology: “containers vs. virtual machines”

– An instance of an image

• Example: “process my data in a Singularity container of Matlab

• Host – computer/supercomputer where the image is run

Adapted from LSU Singularity training slides:
http://www.hpc.lsu.edu/training/weekly-materials/2022-Spring/HPC_Singularity_Spring2022.pdf

Singularity and Apptainer

8

Singularity/Apptainer provides a container runtime and an ecosystem for managing
images that is suitable for multi-tenant systems and HPC environments.

Important aspects :
- no need to have elevated privileges at runtime, although root privileges are needed to

build the images.
- each applications will have its own container
- containers are not fully isolated (e.g. host network is available)
- users have the same uid and gid when running an application
- containers can be executed from local image files, or pulling images from a docker

registry

For basic usage refer to:
https://docs.rc.fas.harvard.edu/kb/singularity-on-the-cluster/
https://www.sylabs.io/docs/
https://apptainer.org/

https://docs.rc.fas.harvard.edu/kb/singularity-on-the-cluster/
https://www.sylabs.io/docs/

some examples

9

/n/holyscratch01/shared/simple-examples-singularity

[simple-examples-singularity]$ tree .
├── build-simple-image
│ ├── lolcow.def
│ └── lolcow.sif
├── example-gpu
│ ├── sbatch-run-cuda.sh
├── example-mpi
│ ├── example-mpi.sif
│ ├── mpi.def
│ ├── mpi_pi.c
│ └── sbatch_run.sh
├── example-openmp
│ ├── example-openmp.sif
│ ├── omp_dot2.c
│ ├── omp_pi.c
│ ├── openmp.def
│ ├── sbatch_run_dot2.sh
│ └── sbatch_run_omp_pi.sh
├── localtime
└── remote-build
 ├── example-omp.sif
 └── openmp-remote.def

Subcommands and options

10

The command structure is

singularity [global option] subcommand [subcommand option] image [args]

(see “singularity help” for all available subcommands and specific options)

The most frequent subcommands are

- build : to build an image local or remote
- shell : to start an interactive shell in a container
- exec (or run) : to execute code in a container

most frequent options for “shell” and “exec” are to control storage mounts (--bind) at runtime.

Example : running a simple container

11

request interactive job
user@login-node example-1]$ salloc --mem=4G -p test -N 1 -t 60

[user@holy7c24401 example-1]$ singularity run docker://r-base R
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
Getting image source signatures
Copying blob 2aa31e5eaa2f done
….. omitted output
2021/05/04 14:34:03 info unpack layer:
sha256:debce101a705a0b612a556daedb6d93ca5b3ec0d8cc3b20b57b8e22ca7e64d1b
INFO: Creating SIF file...
R version 4.0.5 (2021-03-31) -- "Shake and Throw"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
>

[user@holy7c24401 example-1]$ singularity run docker://r-base R -q
INFO: Using cached SIF image
>

Cache folder
When using images generated from remote sources singularity will cache layers and converted images under ~/.singularity

[user@holy7c24401 example-1]$ singularity cache list
There are 5 container file(s) using 7.77 GiB and 95 oci blob file(s) using 7.93 GiB of space
Total space used: 15.70 GiB

[user@holy7c24401 example-1]$ ls -lrtha ~/.singularity/cache/oci-tmp/
total 9.0G
... omitted output
-rwxr-xr-x 1 francesco rc_admin 91M Apr 16 11:07
c16e3a79b79dbf1e825c56485ac26e22290db3ad4c69eca4e18e0cc957c02548
-rwxr-xr-x 1 francesco rc_admin 294M May 4 10:34
ff41c917e639685e53adf9a881f000c97e7f172e9bde6b1d0ab854db6ca6b593
drwx------ 3 francesco rc_admin 410 May 4 10:34 .

[user@holy7c24401 example-1]$ singularity cache clean
This will delete everything in your cache (containers from all sources and OCI blobs).
Hint: You can see exactly what would be deleted by canceling and using the --dry-run option.
Do you want to continue? [N/y] y

You can control location of cache with the variable SINGULARITY_CACHEDIR
https://docs.sylabs.io/guides/3.8/user-guide/build_env.html 12

r-base image just pulled

Multicore applications

[user@holy7c24401 example-openmp]$ cat sbatch_run_dot2.sh
#!/bin/bash
#SBATCH -o omp_dot2.out
#SBATCH -t 0-00:30
#SBATCH --mem=4000
Run program
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun -c $SLURM_CPUS_PER_TASK singularity exec ./example-openmp.sif /opt/bin/omp_dot2.x

[user@holy7c24401 example-openmp]$ sbatch -p test -c 4 sbatch_run_dot2.sh
Submitted batch job 26602599

[user@holy7c24401 example-openmp]$ cat omp_dot2.out
Running on 4 threads.
Thread 0: partial dot product = 128300.000000
Thread 3: partial dot product = 202550.000000
Thread 2: partial dot product = 175300.000000
Thread 1: partial dot product = 150550.000000
Global dot product = 656700.000000 13

No difference from running natively built applications.
You can use “srun -c $SLURM_CPUS_PER_TASK”, OMP_NUM_THREDS, or other tools from your code to control
multicore performance.

MPI applications
There are several ways of running MPI applications with singularity (https://docs.sylabs.io/guides/3.8/user-guide/mpi.html)
We recommend hybrid mode (application from container, mpirun from host)

14

[user@holy7c24401 example-mpi]$ cat sbatch_run.sh
#!/bin/bash
#SBATCH -J mpi_pi
#SBATCH -o mpi_pi.out
#SBATCH -e mpi_pi.err
#SBATCH -t 0-00:30
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --mem-per-cpu=1000
#SBATCH -p test

Run program
for i in 1 2 4 8 16
do
 echo "Number of processes: ${i}"
 mpirun -np $i singularity exec
./example-mpi.sif /opt/bin/mpi_pi.x 1000000000
 echo " "
done

[user@holy7c24401 example-mpi]$ sbatch sbatch_run.sh
Submitted batch job 26602885

[user@holy7c24401 example-mpi]$ cat mpi_pi.out |
grep -A1 Number
Number of processes: 1
Elapsed time = 17.859150 seconds
--
Number of processes: 2
Elapsed time = 8.926302 seconds
--
Number of processes: 4
Elapsed time = 4.479907 seconds
--
Number of processes: 8
Elapsed time = 2.253929 seconds
--
Number of processes: 16
Elapsed time = 1.134280 seconds

https://docs.sylabs.io/guides/3.8/user-guide/mpi.html

GPU computing
The option “--nv” allows to automatically import in the container all you need to run your cuda based application.

15

[user@boslogin04 example-gpu]$ cat sbatch-run-cuda.sh
#!/bin/bash
#SBATCH -p gpu_test
#SBATCH -t 30
#SBATCH -o tf_example.out
#SBATCH --gres=gpu:1
#SBATCH --gpu-freq=high
#SBATCH --mem=8G

export
myimage=/n/singularity_images/FAS/nvidia-ngc/tensorflow/tensor
flow_19.10-py3.sif

[! -d ./benchmarks] && git clone --branch
cnn_tf_v1.14_compatible
https://github.com/tensorflow/benchmarks.git

cd benchmarks/scripts/tf_cnn_benchmarks
singularity exec --nv $myimage python tf_cnn_benchmarks.py
--num_gpus=1 --batch_size=32 --model=resnet50
--variable_update=parameter_server

[user@boslogin04 example-gpu]$ sbatch sbatch-run-cuda.sh
Submitted batch job 26603987

[user@boslogin04 example-gpu]$ tail -20 tf_example.out
==========
Generating training model
Initializing graph
Running warm up
Done warm up
Step Img/sectotal_loss
1 images/sec: 310.9 +/- 0.0 (jitter = 0.0) 8.169
10 images/sec: 310.1 +/- 0.2 (jitter = 0.4) 7.593
20 images/sec: 310.4 +/- 0.2 (jitter = 0.6) 7.696
30 images/sec: 310.4 +/- 0.1 (jitter = 0.6) 7.753
40 images/sec: 310.4 +/- 0.1 (jitter = 0.4) 8.007
50 images/sec: 309.2 +/- 1.0 (jitter = 0.7) 7.520
60 images/sec: 309.4 +/- 0.9 (jitter = 0.6) 7.989
70 images/sec: 309.5 +/- 0.7 (jitter = 0.5) 8.027
80 images/sec: 309.6 +/- 0.6 (jitter = 0.6) 7.932
90 images/sec: 309.5 +/- 0.6 (jitter = 0.6) 7.851
100 images/sec: 309.2 +/- 0.6 (jitter = 0.6) 7.798
--
total images/sec: 308.94
--

Example : running with accelerated graphics

16

This needs to be run on a gpu node where gpu accepts graphics tasks and with a graphics server running
(remoteviz partition)

>$ singularity exec --nv /n/singularity_images/OOD/unet-caffe/unet-caffe-fiji_latest-2020-03-23.sif /bin/bash -c
"vglrun ImageJ-linux64"
vglrun needs to be installed inside the container.

example of vdi app : https://gitlab-int.rc.fas.harvard.edu/openondemand/imagej-unet-caffe

17

1. Build Locally in your own laptop/computer
To do this you need to be on your own development environment where you have elevated privileges and Singularity installed
[myLinuxSystem]> sudo /usr/local/bin/singularity build some_imagename.sif
some_definition_file.def

 2. Build locally using Docker to build singularity. (only if you understand the options)
If you don’t have a linux system available (or can’t run VMs on your laptop), you can try to use docker to run singularity.
$> docker run --privileged --rm -ti -v $PWD/examples:/mnt -v $PWD/localtime:/etc/localtime --entrypoint /bin/bash
quay.io/singularity/docker2singularity
bash-5.0# cd /mnt/
bash-5.0# singularity build lolcow.sif lolcow.def
INFO: Starting build...
... omitted output
INFO: Build complete: lolcow.sif
bash-5.0# singularity run lolcow.sif
 _________________ ____________________
/ Your true val ue depends entirely on \
\ what you a re compared with. /
 ---------------------------- ---------
 \ ^__^
 \ (oo)______ _
 (__)\)\/\
 | |----w |
 || ||

Building images locally (i): the Singularity way

18

$ cat build-simple-image/lolcow.def
Bootstrap: docker
From: ubuntu:16.04

%post
 apt-get -y update
 apt-get -y install fortune cowsay lolcat

%environment
 export LC_ALL=C
 export PATH=/usr/games:$PATH

%runscript
 fortune | cowsay | lolcat

Singularity definition file example

https://docs.sylabs.io/guides/3.8/user-guide/definition_files.html

19

Build in your own laptop/computer

To do this you need to be on your own development environment where you have elevated privileges and Singularity installed
[myLinuxSystem]> sudo singularity build some_imagename.sif some_definition_file.def

Singularity definition file example:

Building images locally: (i) the Singularity way

$ cat build-simple-image/lolcow.def
Bootstrap: docker
From: ubuntu:16.04

%post
 apt-get -y update
 apt-get -y install fortune cowsay lolcat

%environment
 export LC_ALL=C
 export PATH=/usr/games:$PATH

%runscript
 fortune | cowsay | lolcat

Building images locally: (ii) the Docker way

20

[user@mylaptop ~]$ docker build -t rstudio_rockerverse_fasrc:4.0.0 .
[user@mylaptop ~]$ docker run -v /var/run/docker.sock:/var/run/docker.sock \
 -v /data/sing-images-tmp/:/output -v /data/tmp:/tmp \
 --privileged -t --rm quay.io/singularity/docker2singularity rstudio_rockerverse_fasrc:4.0.0

Use Docker to build your local image and then convert it to singularity :
- build your image in docker from a Dockerfile, or interactively
- convert the image with docker2singularity

Example :

Using docker can be convenient because the tools are very mature and it’s very simple to
modify images, add layers, …

https://github.com/singularityhub/docker2singularity

21

Build remotely directly from Cannon to singularity cloud

You can do it on Cannon, but you need to first (detailed FASRC docs):
- sign up for an account on https://cloud.sylabs.io/library
- generate a token
- use “singularity login” to login

Building images remotely with Sylabs cloud

[user@login-node]$ salloc --mem=4000 -p test -N 1 -t 60
[user@compute-node]$ singularity remote login
[user@compute-node]$ singularity build --remote some_imagename.sif some_definition_file.def

This will use your definition file to build the image in Sylabs cloud and download it to your local folder on Cannon

Note that you likely need to adapt some of the sections of your definition file:
● %files section: copy files from outside of the container into the container
● %post section: download and install software and libraries

https://docs.rc.fas.harvard.edu/kb/singularity-on-the-cluster/#Building_Singularity_images_with_Sylabs_Cloud
https://cloud.sylabs.io/library

Local vs Remote build
Remote builds are very convenient but you might need to adapt your definition file

22

$ cat example-openmp/openmp.def
Bootstrap: docker
From: ubuntu:18.04

%setup
 mkdir ${SINGULARITY_ROOTFS}/opt/bin

%files
 omp_pi.c /opt/bin
 omp_dot2.c /opt/bin

%environment
 export PATH="/opt/bin:$PATH"

%post
 echo "Installing required packages..."
 apt-get update && apt-get install -y bash gcc gfortran

 echo "Compiling the application..."
 cd /opt/bin && gcc -fopenmp -o omp_pi.x omp_pi.c && gcc -fopenmp -o
omp_dot2.x omp_dot2.c

$ cat remote-build/openmp-remote.def
Bootstrap: docker
From: ubuntu:18.04

%setup
 mkdir ${SINGULARITY_ROOTFS}/opt/bin

%environment
 export PATH="/opt/bin:$PATH"

%post
 echo "Installing required packages..."
 apt-get update && apt-get install -y bash gcc gfortran curl

 echo "Compiling the application..."
 cd /opt/bin && curl -O
https://raw.githubusercontent.com/fasrc/User_Codes/master/Courses/CS20
5/OpenMP/Example6/omp_pi.c && gcc -fopenmp -o omp_pi.x omp_pi.c
 cd /opt/bin && curl -O
https://raw.githubusercontent.com/fasrc/User_Codes/master/Courses/CS20
5/OpenMP/Example5/omp_dot2.c && gcc -fopenmp -o omp_dot2.x omp_dot2.c

Singularity and host file system

23

What the user sees
within container

Singularity image

Host

/etc /usr /lib $HOME $SCRATCH

/etc /usr /lib $HOME $SCRATCH

/etc /usr /lib

Adapted from LSU Singularity training slides:
http://www.hpc.lsu.edu/training/weekly-materials/2022-Spring/HPC_Singularity_Spring2022.pdf

Storage: Bind Mount

• By default all directories in the Singularity image are read only.
– Note: When building from Docker, sometimes Docker expects something to be

writable that may not be in Singularity.

• In addition system directories are not available, only those defined in the Singularity image.

• You can bind external mounts into singularity using the -B option
– -B hostdir:containerdir
– -B hostdir <- Maps it to same path inside the container

• On Cannon, we automatically map /n, /net, /scratch and /cvmfs into the image using
bind mount.

24

Bind Mount: some interesting use cases

1. Expose extra tools from the host inside the container (for example slurm)
$> export SING_BINDS=" -B /etc/nsswitch.conf -B /etc/sssd/ -B /var/lib/sss -B /etc/slurm -B /slurm -B
/var/run/munge -B `which sbatch ` -B `which srun ` -B `which sacct ` -B `which scontrol ` -B
/usr/lib64/slurm/ "

$> export SING_BINDS="$SING_BINDS -B ${OMNIROOT}/omnisci-storage:/omnisci-storage -B
${OMNIROOT}/Datasets:/omnisci/sample_datasets "

$> singularity run $SING_GPU $SING_BINDS --pwd /omnisci $container_image

2. Overlay folders to hide the content to applications in case there is no option to specify an
alternate location. e.g.
$> export SING_BINDS=" $SING_BINDS -B $MYTMP:/tmp -B $RSTUDIO_CONFDIR:$HOME/.rstudio "

3. Sometimes you need to only allow a few specific things to be mapped in the container
$> export SING_BIND=" --contain -B /tmp -B /dev -B /scratch -B `dirname $HOME` -B
/n/helmod/apps -B /n/helmod/modulefiles -B /n/sw/eb -B /n/sw/intel-cluster-studio-2017 "

25

26

Additional use cases (i) : Legacy software
When we moved from Centos6 to Centos7 there were a few legacy software that
would not work in Centos 7. We can still run those in a centos6 container.

27

Additional use cases: Storage performance

Overlay:
useful for dealing with large number of files

28

from https://informatics.fas.harvard.edu/cactus-on-the-fasrc-cluster.html (courtesy of Nathan Weeks)

readonly JOBSTORE_IMAGE=jobStore.img
readonly CACTUS_SCRATCH=/scratch/cactus-${SLURM_JOB_ID}

 mkdir -m 777 ${CACTUS_SCRATCH}/upper ${CACTUS_SCRATCH}/work
 truncate -s 2T "${JOBSTORE_IMAGE}"
 singularity exec ${CACTUS_IMAGE} mkfs.ext3 -d ${CACTUS_SCRATCH} "${JOBSTORE_IMAGE}"

Use empty /tmp directory in the container (to avoid, e.g., pip-installed packages in ~/.local)
mkdir -m 700 -p ${CACTUS_SCRATCH}/tmp

the toil workDir must be on the same file system as the cactus jobStore
singularity exec --overlay ${JOBSTORE_IMAGE} ${CACTUS_IMAGE} mkdir -p /cactus/workDir
srun -n 1 singularity exec --cleanenv \
 --no-home \
 --overlay ${JOBSTORE_IMAGE} \
 --bind ${CACTUS_SCRATCH}/tmp:/tmp \
 ${CACTUS_IMAGE} \
 cactus ${CACTUS_OPTIONS-} ${restart-} --workDir=/cactus/workDir --binariesMode local /cactus/jobStore "${SEQFILE}" "${OUTPUTHAL}"

https://informatics.fas.harvard.edu/cactus-on-the-fasrc-cluster.html

VMs or Containers

29

Infrastructure

Hypervisor Kernel

Guest
Kernel

Libs/Bins

App 1

Guest
Kernel

Libs/Bins

App 2

Guest
Kernel

Libs/Bins

App 3

VM 1

VMs:
hardware virtualization + OS

Containers:
User defined software stack

VM 2 VM 3

Infrastructure

Host Kernel

Libs/Bins

App 1

Libs/Bins

App 2

Libs/Bins

App 3

Container Runtime

Container 1 Container 2 Container 3

