
Getting started on the
FASRC Cannon Cluster

Learning Objectives

▪ Describe the structure of a compute cluster

▪ Log in to Cannon

▪ Demonstrate how to start an interactive session and a batch job with the
SLURM job scheduler

▪ Query job metadata

▪ Cluster storage

▪ Cluster software modules

▪ VDI - Open OnDemand

2

Cluster Architecture

3

Cluster Terminology
• Supercomputer/High Performance Computing (HPC) cluster: A collection of similar

computers connected by a high speed interconnect that can act in concert with each

other

• Node : A computer in the cluster, an individual motherboard with CPU, memory, local

hard drive

• CPU: Central Processing Unit, it can contain multiple computational cores (processors)

• Core: Basic unit of compute that runs a single instruction of code (a single process)

• GPGPU/GPU: General Purpose Graphics Processing Unit, a GPU designed for

supercomputing.

4

Login & Access

5

https://docs.rc.fas.harvard.edu/kb/quickstart-guide/

Login & Access

6

$ ssh username@login.rc.fas.harvard.edu

● ssh stands for Secure SHell

● ssh is a protocol for data transfer that is secure, i.e the data is encrypted as it travels between your
computer and the cluster (remote computer)

● Commonly used commands that use the ssh protocol for data transfer are, scp and sftp

Once you have an account you can use the Terminal to connect to Cannon

– Mac: Terminal

– Linux: Xterm or Terminal

– Windows: SSH client - Putty or Bash Emulator - Git Bash

Once you have an account you can use the Terminal to connect to Cannon

– Mac: Terminal

– Linux: Xterm or Terminal

– Windows: SSH client - Putty or Bash Emulator - Git Bash

Login & Access

7

$ ssh username@login.rc.fas.harvard.edu

Cannon
Login issues? See https://rc.fas.harvard.edu/resources/support/

Password:
Verification code:

Once you have run the ssh command:

– Enter your password (cursor won’t move!)

– Add a verification code (2-Factor Authentication)

OpenAuth is 2-factor authentication separate from HarvardKey and updates
the token every 30 seconds

Login & Access

8

https://docs.rc.fas.harvard.edu/kb/quickstart-guide/

Login & Access

9

You have logged into the login node!

[joesmith@holylogin03 ~]$

Name of the login
node assigned to you

Access to resources on a compute node

10

• Login node:

– not designed for analysis

– not anything compute- or memory-intensive

– best practice is to request a compute node as soon as you log in

• Interactive session:

– work on a compute node “interactively”

– request resources from SLURM using the salloc command

– session will only last as long as the remote connection is active

Access to resources on a compute node

11

Simple Linux Utility for Resource Management - SLURM job scheduler:

● Fairly allocates access to resources to users on compute nodes

● Manages a queue of pending jobs; ensures that no single user or group monopolizes the cluster

● Ensures users do not exceed their resource requests

● Provides a framework for starting, executing, and monitoring batch jobs

Access to resources on a compute node

12

[joesmith@holylogin03 ~]$ salloc -p test --mem 100 -t 0-01:00

Requesting an interactive session:

[joesmith@holy7c26602 ~]$

Name of the compute node
assigned to you

salloc - is how interactive sessions are started with SLURM

-p test - requesting a compute node in a specific partition*

--mem 100 - memory requested in MB

-t 0-1:00 - time requested (1 hour)

* Partitions are groups of computers that are designated to
perform specific types of computing. More on next slide

Slurm Job Script (for sbatch)

#!/bin/bash

#SBATCH -J Rjob1 # Job name
#SBATCH -p shared # Partition(s) (separate with commas if using multiple)
#SBATCH -n 1 # Number of cores
#SBATCH -t 0-00:30:00 # Time (D-HH:MM:SS)
#SBATCH --mem=500M # Memory
#SBATCH -o %j.o # Name of standard output file
#SBATCH -e %j.e # Name of standard error file

LOAD SOFTWARE ENV
module load R/3.5.1-fasrc01

input=M2.R

EXECUTE CODE
R CMD BATCH $input $input.out

Slurm directives

More information: https://docs.rc.fas.harvard.edu/kb/running-jobs/

Test first
ALWAYS test the job submission script first:
• To ensure the job will complete without any errors

• To ensure you understand the resource needs and have requested them appropriately

[joesmith@boslogin01 ~]$ sbatch runscript.sh
Submitted batch job 20801712
[joesmith@boslogin01 ~]$

Submitting a batch job:

Partitions on Cannon

$ sinfo -p shared

$ scontrol show partition shared

Partitions: shared gpu test gpu_test serial_requeue gpu_requeue bigmem unrestricted pi_lab

Time Limit 7 days 7 days 8 hrs 1 hrs 7 days 7 days no limit no limit varies

Nodes 530 15 16 1 1930 155 6 8 varies

Cores /
Node 48 32 +

4 V100 48 32 +
4 V100 varies varies 64 64 varies

Memory /
Node (GB) 196 375 196 375 varies varies 512 256 varies

Learn more about a partition:

sacct overview
• sacct = Slurm accounting database

– every 30 sec the node collects the amount of cpu and memory usage that
all of the process ID are using for the given job. After the job ends this
data is set to slurmdb.

• Common flags
• -j jobid or --name=jobname
• -S YYYY-MM-DD and -E YYYY-MM-DD
• -o ouput_options

16

JobID,JobName,NCPUS,Nnodes,Submit,Start,End,CPUTime,
TotalCPU,ReqMem,MaxRSS,MaxVMSize,State,Exit,Node

17

Run a test batch job and check memory usage after the job has completed
(with the “sacct” Slurm command)

Example:

or
286712KB = 286.712MB

Memory Usage

[joesmith@boslogin01 ~]$ sacct -j 3937435 -o ReqMem,MaxRSS

 ReqMem MaxRSS
 ---------- ----------
 1000Mn
 1000Mn 286712K

18

seff overview

[user@boslogin01 home]# seff 1234567
Job ID: 1234567
Cluster: odyssey
User/Group: user/user_lab
State: COMPLETED (exit code 0)
Nodes: 8
Cores per node: 64
CPU Utilized: 37-06:17:33
CPU Efficiency: 23.94% of 155-16:02:08 core-walltime
Job Wall-clock time: 07:17:49
Memory Utilized: 1.53 TB (estimated maximum)
Memory Efficiency: 100.03% of 1.53 TB (195.31 GB/node)

A Fairshare score

• determines what priority a user/group has to run their jobs

• is calculated for a group using various factors, including what

resources/partition of the cluster groups have access.

• goes from 1 to 0 with a middle point of 0.5

19More information: https://docs.rc.fas.harvard.edu/kb/fairshare/

Fairshare score

A Fairshare score

• determines what priority a user/group has to run their jobs

• is calculated for a group using various factors, including what

resources/partition of the cluster groups have access.

• goes from 1 to 0 with a middle point of 0.5

20

� 1.0: Unused. The account has not run any jobs recently.

� 1.0 > f > 0.5: Under-utilization. The account is underutilizing their granted Share.

� 0.5: Average utilization. The account on average is using exactly as much as their granted Share.

� 0.5 > f > 0: Over-utilization. The account has overused their granted Share.

� 0: No share left. The account has vastly overused their granted Share.

More information: https://docs.rc.fas.harvard.edu/kb/fairshare/

Fairshare score

A Fairshare score

• determines what priority a user/group has to run their jobs

• is calculated for a group using various factors, including what

resources/partition of the cluster groups have access.

• goes from 1 to 0 with a middle point of 0.5

• dynamically updated based on usage

• ensures that no single user or group monopolizes the cluster resources

21More information: https://docs.rc.fas.harvard.edu/kb/fairshare/

Fairshare score

Fairshare score

22

• Accounts on the cluster are assigned to a primary lab “group” based on their
affiliation.

[user1@holyitc01 ~]$ groups

test_lab cluster_users

More information: https://docs.rc.fas.harvard.edu/kb/fairshare/

Fairshare score

23

• Accounts on the cluster are assigned to a primary lab “group” based on their
affiliation.

• sshare can be used to check the current fairshare for a whole group or a single
user

[user1@holyitc01 ~]$ groups

test_lab cluster_users

[user1@holyitc01 ~]$ sshare --account=test_lab –a

Account User RawShares NormShares RawUsage EffectvUsage FairShare

--

test_lab 244 0.001363 45566082 0.000572 0.747627

test_lab user1 parent 0.001363 8202875 0.000572 0.747627

test_lab user2 parent 0.001363 248820 0.000572 0.747627

test_lab user3 parent 0.001363 163318 0.000572 0.747627

test_lab user4 parent 0.001363 18901027 0.000572 0.747627

test_lab user5 parent 0.001363 18050039 0.000572 0.747627

More information: https://docs.rc.fas.harvard.edu/kb/fairshare/

Storage Grid

24

Home Directories Lab Directory
(Startup) Local Scratch Global Scratch Tier Storage

Mount Point /n/home#/
$USER /n/holylabs/pi_lab /scratch /n/$SCRATCH /n/pi_lab

Size Limit 100GB 1- 4TB 70GB/node 2.4PB total Based on Tier

Availability All cluster nodes +
Desktop/laptop All cluster nodes Local compute

node only All cluster nodes All cluster nodes/
mountable

Retention Policy Indefinite Indefinite Job duration 90 days Indefinite

Backup Hourly snapshot +
Daily Offsite No backup No backup No backup Depending on Tier

Performance
Moderate. Not

suitable for high
I/O

Moderate. Not
suitable for high I/O

Suited for small
file I/O intensive

jobs

Appropriate for
large file I/O

intensive jobs

Depending on Tier

Cost Free Free max of 4TB Free Free Paid

Tier Storage: https://www.rc.fas.harvard.edu/services/data-storage/

LMOD Module System

25

Software is loaded incrementally using modules, to set up your shell environment (e.g.,
PATH, LD_LIBRARY_PATH, and other environment variables)

Software search capabilities similar to module-query are also available on the RC Portal:
https://portal.rc.fas.harvard.edu/apps/modules

Module loads best placed in SLURM batch scripts:
▪ Keeps your interactive working environment simple
▪ Is a record of your research workflow (reproducible research!)
▪ Keep .bashrc module loads sparse, lest you run into software and library conflicts

module load matlab/R2016a-fasrc01 # recommended
module load matlab # most recent version
module list # show loaded modules
module purge # unload all modules

https://portal.rc.fas.harvard.edu/apps/modules

VDI - Open OnDemand
For applications that need a GUI: https://vdi.rc.fas.harvard.edu

Supports:
• Remote Desktop
• Jupyter Notebooks
• Rstudio
• Matlab

Notes:
• Need to be on the RC VPN to use
• Sessions are submitted as jobs on the cluster and thus use fairshare but also

can run on any partition

26

https://vdi.rc.fas.harvard.edu

FASSE Cluster
The FAS Secure Environment (FASSE) is a
secure multi-tenant cluster environment to
provide Harvard researchers access to a
secure enclave for analysis of sensitive
datasets with DUA‘s and IRB’s classified as
Level 3.

https://policy.security.harvard.edu/
https://docs.rc.fas.harvard.edu/kb/
data-use-agreements/

https://security.harvard.edu/

https://docs.rc.fas.harvard.edu/kb/f
asse/

27

https://policy.security.harvard.edu/
https://docs.rc.fas.harvard.edu/kb/data-use-agreements/
https://docs.rc.fas.harvard.edu/kb/data-use-agreements/
https://security.harvard.edu/
https://docs.rc.fas.harvard.edu/kb/fasse/
https://docs.rc.fas.harvard.edu/kb/fasse/

Request Help - Resources
• https://docs.rc.fas.harvard.edu/kb/support/

– Documentation
• https://docs.rc.fas.harvard.edu/

– Portal
• http://portal.rc.fas.harvard.edu/rcrt/submit_ticket

– Email
• rchelp@rc.fas.harvard.edu

– Office Hours
• Wednesday noon-3pm https://harvard.zoom.us/j/255102481

– Consulting Calendar
• https://www.rc.fas.harvard.edu/consulting-calendar/

– Training
• https://www.rc.fas.harvard.edu/upcoming-training/

https://docs.rc.fas.harvard.edu/kb/support/

