
Plamen Krastev, PhD - plamenkrastev@fas.harvard.edu
Computational Scientist and Research Consultant

Using Containers on the Cannon
Cluster: Singularity

1

mailto:plamenkrastev@fas.harvard.edu

Objectives

2

§ To advise you on the best practices for running
Singularity containers on the FASRC cluster

§ To provide the basic knowledge required for
building your own (Singularity) containers

Overview

3

q What are containers and why we care? (overview)

q Singularity container system

q How to run Singularity containers on Cannon:

§ Pulling from docker registry or sylab library

§ Using GPUs

§ Running local images

q How to build your own containers

q Bind mounts

q Running parallel multicore (OpenMP) and distributed (MPI) applications

What problems are we are trying to solve?

4

Deploying Applications:
Building software is often a complicated business, particularly on HPC and
other multi-tenant systems:
§ HPC clusters have typically very specialized software stacks which

might not adapt well to general purpose applications.

§ OS installations are streamlined

§ Some applications might need dependencies that are not readily
available and complex to build from source.

§ End users use Ubuntu or Arch, cluster typically use RHEL, or SLES, or
other specialized OS.
(... “$ sudo apt-get install “ will not work)

What problems are we are trying to solve?

5

Portability and Reproducibility:

§ Running applications on multiple systems typically needs replicating the
installations multiple times making it hard to keep consistency.

§ It would be useful to publish the exact application used to run a
calculation for reproducibility or documentation purpose.

§ As a user can I minimize the part of the software stack I have no control
on, to maximize reproducibility without sacrificing performance too
much?

What problems are we are trying to solve?

6

Resource Contention and Security:

§ Tasks on a normal OS float between cores and memory
space.

§ Want to set a cap on usage for multiple tenants.

§ Ensure users cannot see other users’ applications and
stacks

Containers: easi”er” software deployment

7

Containers provide a potential solution…. or at the very least can help.
q Easier software deployment:

Users can leverage on installation tools that do not need to be available natively
on the runtime host
(e.g., package managers of various Linux distributions).

q Software can be built on a platform different from the execution hosts.

q They package in one single object all necessary dependencies.

q Easy to publish and sign

q They are portable **
§ … provided you run on a compatible architecture)
§ access to special hardware needs special libraries also inside the container,

which at the moment limits portability

Types of Containers

8

§ cgroups (control groups)

§ python/conda environment

§ Docker-like containers (e.g., rkt, podman, Linux LXC)

§ Virtual Machines (VM)

Types of Containers

9

Linux LXC

General purpose / Microservice Oriented
HPC oriented:
• Compatible with WLM
• No privilege escalation needed

Singularity (https://sylabs.io)

10

Singularity provides a container runtime and an ecosystem for managing
images that is suitable for multi-tenant systems and HPC environments.

Important aspects:
§ no need to have elevated privileges at runtime, although root privileges

are needed to build the images.
§ each applications will have its own container
§ containers are not fully isolated (e.g., host network is available)
§ users have the same uid and gid when running an application
§ containers can be executed from local image files, or pulling images from

a docker registry, a singularity hub or from sylab libraries (see
https://cloud.sylabs.io … N.B. service is still in alpha)

For basic usage refer to:
https://www.rc.fas.harvard.edu/resources/documentation/software/singularity-on-odyssey/
https://www.sylabs.io/docs/

https://cloud.sylabs.io/
https://www.rc.fas.harvard.edu/resources/documentation/software/singularity-on-odyssey/
https://www.sylabs.io/docs/

Example: running from a docker registry

11

Running tensorflow on a CPU node:

--- Start an interactive session ---
[login-node]$ salloc -p test --mem=4G -N 1 -t 60
--- cd to your SCRATCH folder ---
[compute-node]$ cd $SCRATCH/your_lab/your_user/
--- Pull the latest TF version from the Docker registry ---
[compute-node]$ singularity pull --name tf27_cpu.simg \
> docker://tensorflow/tensorflow:latest
--- Launch Python and print the TF version ---
[compute-node]$ singularity exec tf27_cpu.simg python
… (omitted output)
>>> import tensorflow as tf
>>> print(tf.__version__)
2.7.0
--- Get examples from keras.io ---
[compute-node]$ git clone https://github.com/keras-team/keras-io.git
--- Execute the code ---
[compute-node]$ singularity exec tf27_cpu.simg python \
./keras-io/examples/vision/mnist_convnet.py
… (omitted output)
Test loss: 0.026334384456276894
Test accuracy: 0.9904999732971191

https://github.com/keras-team/keras-io.git

Example: running from a docker registry

12

Running tensorflow on a GPU node:

--- Start an interactive session on a partition with GPUs, e.g.,
[login-node]$ salloc -p gpu_test --gres=gpu:1 --mem=4G -N 1 -t 60
--- cd to your SCRATCH folder ---
[compute-node]$ cd $SCRATCH/your_lab/your_user/
--- Pull the latest TF GPU version from the Docker registry ---
[compute-node]$ singularity pull --name tf27_gpu.simg \
> docker://tensorflow/tensorflow:latest-gpu
--- Get examples from keras.io ---
[compute-node]$ git clone https://github.com/keras-team/keras-io.git
--- Execute the code ---
[compute-node]$ singularity exec --nv tf27_gpu.simg python \
./keras-io/examples/vision/mnist_convnet.py
… (omitted output)
Test loss: 0.024948162958025932
Test accuracy: 0.9915000200271606

https://github.com/keras-team/keras-io.git

Example: pulling images from repositories

13

Preparation (start an interactive session and cd to $SCRATCH directory):
[login-node]$ salloc -p test --mem=4G -N 1 -t 60
[compute-node]$ cd $SCRATCH/your_lab/your_user/

Pulling from Docker:
[compute-node]$ singularity pull docker://tensorflow/tensorflow:latest

Pulling from shub:
[compute-node]$ singularity pull shub://vsoch/hello-world

Pulling from sylab / library -- https://cloud.sylabs.io/library
[compute-node]$ $ singularity pull library://library/default/ubuntu:21.04

Pulling from NVIDIA’s NGC registry - https://catalog.ngc.nvidia.com
[compute-node]$ singularity pull docker://nvcr.io/nvidia/tensorflow:21.10-tf2-py3
[compute-node]$ singularity exec tensorflow_21.10-tf2-py3.sif python
Python 3.8.10 (default, Jun 2 2021, 10:49:15)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> print(tf.__version__)
2.6.0

https://cloud.sylabs.io/library
https://catalog.ngc.nvidia.com/

14

Example: running from a local image

15

Running IDL:

[login-node]$ salloc -p test --mem=4G -N 1 -t 60
[compute-node]$ cd $SCRATCH/your_lab/your_user/
[compute-node]$ myimage=/n/helmod/apps/centos7/Singularity/IDL/idl-8.7.2.sif
[compute-node]$ singularity exec $myimage idl
IDL 8.7.2 (linux x86_64 m64).
(c) 2019, Harris Geospatial Solutions, Inc.

Licensed for use by: Harvard University (MAIN)
License: 216887
A new version is available: IDL 8.8.1
https://harrisgeospatial.flexnetoperations.com

IDL>

16

Cache folder

17

When using images generated from remote sources singularity will cache layers and converted images
under ~/.singularity

[pkrastev@holygpu2c0703 Examples]$ singularity cache list
There are 5 container file(s) using 3.70 GiB and 53 oci blob file(s) using 3.67 GiB of
space
Total space used: 7.36 GiB

[pkrastev@holygpu2c0703 Examples]$ ls -lh ~/.singularity/cache/oci-tmp/
total 4.1G
-rwxr-xr-x 1 pkrastev rc_admin 380M Nov 7 14:13
31e09cf438a41f12c759cc8cc79c6b0fbb0db5abfc3de8169e916c8c9ac38dc5
-rwxr-xr-x 1 pkrastev rc_admin 716M Nov 7 23:13
a85971e31b430779c8fd19496c08f84122a9ebbcbe89ce32ddd729d37cdb1def
-rwxr-xr-x 1 pkrastev rc_admin 2.6G Nov 7 21:22
fc5eb0604722c7bef7b499bb007b3050c4beec5859c2e0d4409d2cca5c14d442

[pkrastev@holygpu2c0703 Examples]$ singularity cache clean
This will delete everything in your cache (containers from all sources and OCI blobs).
Hint: You can see exactly what would be deleted by canceling and using the --dry-run
option.
Do you want to continue? [N/y]

You can control the location of the variable SINGULARITY_CACHEDIR
https://sylabs.io/guides/3.7/user-guide/build_env.html

https://sylabs.io/guides/3.7/user-guide/build_env.html

Running cluster jobs

18

#!/bin/bash

#SBATCH -J singularity_test

#SBATCH -n 1

#SBATCH -p test

#SBATCH --mem=4G

#SBATCH -t 0-08:00

singularity run my_image.sif

OR

singularity exec my_image.sif my_command

Build your first container

19

Container images can be built using a (definition) file that specifies the recipe, e.g.,

$ cat Singularity.def
Bootstrap: debootstrap
OSVersion: xenial
MirrorURL: http://us.archive.ubuntu.com/ubuntu/

%runscript
echo "This is what happens when you run the container..."

%post
echo "Hello from inside the container"
sed -i 's/$/ universe/' /etc/apt/sources.list
apt-get -y update
apt-get -y install vim
apt-get clean

https://sylabs.io/guides/3.8/user-guide/definition_files.html

https://sylabs.io/guides/3.8/user-guide/definition_files.html

Build your first container

20

Once you have your singularity definition file you have 3 options to build your image:

(1) Build locally
To do this you need to be on your own development environment where you have
admin / root privileges, e.g., personal PC (you will need to install singularity first)

[my_computer]$ singularity build some_image_name.sif Singularity.def

(2) Build remotely
You can do it on Cannon, but you need to have an account on https://cloud.sylabs.io
get a token and store it in $HOME/.singularity/sylabs-token

[login-node]$ salloc -p test --mem=4G -N 1 -t 60
[compute-node]$ cd $SCRATCH/your_lab/your_user/
[compute_node]$ singularity build --remote \
> some_image_name.sif Singularity.def

This will create your def file, build the image and download it to the local folder.

https://cloud.sylabs.io/

Build your first container

21

Once you have your singularity definition file you have 3 options to build your image:

(3) Build in Docker (locally)

You can build an image in docker locally on your machine. This has the advantage of
faster iteration.

Export to dockerhub or use docker2singularity
https://github.com/singularityhub/docker2singularity

Pull image to cluster in singularity, or scp it and use.

https://github.com/singularityhub/docker2singularity

Bind Mount

22

q By default, all directories in the Singularity image are read only.
§ Note: When building from Docker, sometimes Docker expects something to be

writable that may not be in Singularity.

q In addition, system directories are not available, only those defined in the Singularity
image.

q You can bind external mounts into singularity using the -B/--bind option
§ -B hostdir:containerdir
§ -B hostdir # maps it to same path inside the container

Example:
$ ls /data # on the host machine
bar foo

inside the container
$ singularity exec --bind /data:/mnt my_container.sif ls /mnt
bar foo

On Cannon, we automatically map /n, /net, and /scratch into the image using
bind mount.

https://sylabs.io/guides/3.8/user-guide/bind_paths_and_mounts.html

https://sylabs.io/guides/3.8/user-guide/bind_paths_and_mounts.html

OpenMP applications

23

Bootstrap: docker
From: ubuntu:18.04

%setup
mkdir ${SINGULARITY_ROOTFS}/opt/bin

%files
omp_dot.c /opt/bin

%environment
export PATH="/opt/bin:$PATH"

%post
echo "Installing required packages..."
apt-get update && apt-get install -y bash gcc gfortran

echo "Compiling the application..."
cd /opt/bin
gcc -fopenmp -o omp_dot.x omp_dot.c

https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers/OMP_Apps

https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers/OMP_Apps

OpenMP applications

24

#!/bin/bash
#SBATCH -J omp_dot
#SBATCH -o omp_dot.out
#SBATCH -e omp_dot.err
#SBATCH -t 0-00:30
#SBATCH -p test
#SBATCH -N 1
#SBATCH -c 4
#SBATCH --mem=4000

PRO=omp_dot

Run program
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun -c $SLURM_CPUS_PER_TASK singularity exec omp_dot.simg \
/opt/bin/omp_dot.x | sort > ${PRO}.dat

MPI applications

25

There are several ways of running MPI applications with singularity
https://sylabs.io/guides/3.8/user-guide/mpi.html

We recommend hybrid mode (application from container, mpirun from host)
Note: MPI flavors & versions and compile options on the host and in the container need to
match exactly for best performance.

#!/bin/bash
#SBATCH -p test
#SBATCH -n 8
#SBATCH -J mpi_test
#SBATCH -o mpi_test.out
#SBATCH -e mpi_test.err
#SBATCH -t 30
#SBATCH --mem-per-cpu=1000

--- Set up environment ---
module load gcc/10.2.0-fasrc01
module load openmpi/4.1.0-fasrc01

--- Run the MPI application in the container ---
srun -n 8 --mpi=pmix singularity exec openmpi_test.simg /home/mpitest.x

https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers/MPI_Apps

https://sylabs.io/guides/3.8/user-guide/mpi.html
https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers/MPI_Apps

BIG THANKS TO
^^^

Plamen Krastev – Computational Scientist and
Research Consultant

56

