‘@z HARVARD %
s UNIVE_RSITY s

@ i7e T "7 < FAS RESEARCH COMPUTING
[0 " . 3¢ DIVISION OF SCENCES . “#
© " no . % HTTPS://RCFASHARVARDEDU |

COMING SOON

Intro to Code Optimization

FAS Research Computing
https://rc.fas.harvard.edu L

‘mm HARVARD o - ol T - " 7 . . FAS RESEARCHCOMPUTING

gl —— ‘ ; i highe - g DIVISION OF SCIENCES

HTTPS://RCFAS.HARVARD.EDU

Outline

Moore’s Law

CPU Architecture 101

Compiler Optimization

General Code Optimization Rules

Parallelism

Next Steps

@mm HARVARD
ES UNIVERSITY

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

“ FAS RESEARCH COMPUTING
DIVISION OF SCIENCES

P ;
|55 .

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moore's

50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

Transistor count

1,000,000
500,000

100,000
50,000

10,000
5,000

1,000

law.

Intel 80486,

L4

H Explorer's 32-bit
Lisp machine chip’

Intel n(J.!b(:o

72-core Xeon Phi Centriq JIUO 0(’(2 |PU

SPARC ’ 32-core »\‘)
IBM 213 Storage Controli

18-core Xeon H

12 e P()"‘/Fh >
eon Ne ehalem [f(\
R

Six-c
Dual-core Itanium

8-core

D uai-core + GPU Iri
core + GPU G
+ (ﬂ’u (ore

Pentium D Presler -C
Ar)pw A7 (dual-core

POWERS
00
°\ ,.° i
Core 2 Du
i G) n

d

Panim 4 Pescott 29

Pentium 4 Prescott-2M Cor
. @ \PL n
AMD K8 @

Pentium 4 Prescott

Pentium 4 Northwood, o
Barton
Pentium 4 Willametteqp @ 9 QAtom
©QARM Cortex-A9

Pentium Il Tualatin
Pentium Il Mobile Dixon.
AMD K7 8 € Pentium Ill Coppermine
AMD K6-1il
AMD KGQ op. ti]‘m Katma
e

2 Pm u schutes
Pentium x’/no F'Km,xm n
ama \

Pentium, \
© AM|
SAS110

°RJOGO

ARM700

° QARM 3

Motorola 68020
e T T &
VoS . &
©Intel 80186
Ng'l"»

Intel 8086€p € Intel 8088 o © QARM 2
C

ARM 1
Matorola 816 p’,x
TMS 1000 Zilog Z80 o NC4016

ROA ‘ ntel 8085
Intel 8008 el 8080
IS 3 or AOS Technology
-4 'V‘JBQ[;J 6502
Intel 4004 ©0

HTTPS://RCFAS.HARVARD.EDU

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

- - . .

T et .o [FASCTIge o BT
- VNIV ERSTIY v <= % HTTPS.//RCFASHARVARD.EDU

CPU Archltectu re 101

or e 32KiB 8-Way ®
16 Bytes/cycle B
Branch
Predictor Istruction Fetch & PreDecode |
iz 3 ..a»‘
. [Eremder =]
Core Block Diagram for Intel Cascade Lake | - 2 7 3 X
(Wikichip) o | ([
e pows
T “;?.‘.“ e mons It
* pops (micro-ops): basic unit of work, cpu cycle e B e
* Branch Predictor W O
* Registers st iar 104 ey | [Amaaers
* Instruction L . -
* Data __ g™ | s i Saten 5
e SIMD: Single Instruction Multiple Data DRSSl DRl Dmal Dal Dagal Ceay Dear D
 ALU: Arithmetic Loglc L.Jnlt - T@ :)]] = el ES
* AGU: Address Generation Unit (R e s i) X LS
* MUL: Multipiler euel | [E2
 FMA: Fused Multiply Add
i INT: Integer Execution Engine Store Buffer & Forwarding |
* FP: Floating Point e ~:
* LEA: Load Effective Address rnune| " H1 Data Cache P22 =
. {72 entries) 32KiB 8-W:
e AES: Advanced Encryption Standard B e st o]
Memory Subsystem '

- A _ PRI O

' i | S : } ot T et e T« EAS RESEARCH COMPUTING
gﬂ? Eﬁ%&éﬁ? ‘ L FASIH] cafy 0 . iy DIVISION OF SCIENCES ;
Memory Hierarchy

HTTPS://RCFAS.HARVARD.EDU

Latency from next

Size (bytes)
level (cycles)

A registers 192
4 L1 cache 32k
12 L2 cache 256k
26 L3 cache M
230-360 2G y

main memory

Intel Sandy Bridge Memory Hierarchy from Intro to HPC by Victor Eijkhout

T ' e a R T AN

= e . o [FASEIERE 4 BESEERET
- UNIVERSITY S ’ h _+ = ® HTTPS://RCFASHARVARD.EDU

Compiler Optlmlzatlon

* Use the latest compiler

* Remove all debug flags for production runs
-g, --traceback, -check-* (Intel), -debug, -W*

* Test code performance at different optimization levels
* Be careful of processor specific optimizations
* Use only optimizations that improve code performance

* Always verify that the result you are getting is still correct when using a new compiler and/or new optimization level

* Read the manual page for the compiler as compilers vary on how they bundle their optimization levels.

‘@ HARVARD "7 p : ym a1 - 7 7l .« FAS RESEARCH COMPUTING
; Y ' | R 2 »
@8, UNIVERSITY | ‘ & FASIH]L, B g DIVISION OF S ClENCES

HTTPS://RCFAS.HARVARD.EDU

-00

- Disables all optimizations
This is good for debugging but should never be used

. If you truly want to see how much work the compiler is doing try
-00, but warning your code will run dead slow.

Default optimization level for gcc

B S e ' FAsm~ St tTe T " < FAS RESEARCH COMPUTING
: -) , . .k -
4 bisfe .. .4 DIVISION OF SCIENCES
€8 . UNIVERSITY | | ‘ A PLAL dg® - . % HTTPS.//RCFASHARVARD.EDU

-O1

.- Enables optimizations for speed but disables optimizations that
impact code size, such as intrinsic inlining

- This optimization level is safe in all cases

- This should be the absolute minimum optimization but should not
be the norm. Only use if you absolutely have to for code
consistency.

‘@@ HARVARD
B8, UNIVERSITY

-02

Default optimization level for Intel

Safe in most cases, but can lead to variance in
round off error or out of order instructions in
edge cases.

Vectorization (Intel only): -vec, -xCore-AVX512
* Vectorization report: -qopt-repot=1
-qopt-report-phase=vec

Inlining of intrinsics

Intrafile interprocedural optimization

Loop unrolling

Variable renaming

Variable simplification

Intel Compiler Specific: Codes compiled with 02
start picking up additional Intel chip specific
optimizations.

T : 2 el Tl - ° 1 ©l:7"" < FAS RESEARCH COMPUTING
FASIH] afe . © " ..o DIVISION OF SCIENCES
e T
' B - PLAS I HTTPS://RCFAS.HARVARD.EDU

‘gaze HARVARD ¥t : ' o1l - " 1 7" < FAS RESEARCH COMPUTING

& UNIVERSITY . ” Lg'e . © 4 DIVISION OF SCIENCES ’

HTTPS://RCFAS.HARVARD.EDU

-03

O3 does everything in O2 plus more aggressive optimizations including:
aggressive loop transformations such as fusion, block-unroll-and-jam
collapsing IF statements
arithmetic reordering as well as less rigorous but faster methods for math may take place.

Automatic Vectorization for gcc: -mavx512*, -ftree-vectorize
Vectorization report: -fopt-info=vec

Unlike O2 which generally safe and may not change your results, O3 is considered the
kitchen sink approach and thus may change your result. O3 may also slow down your
code. Test and verify this option.

e -fast (or -Ofast -march=native) will throw in everything including processor specific
optimizations

‘sagg HARVARD 7 p - ' ol T - " 7 . . FAS RESEARCHCOMPUTING
' ol . DIVISION OF SCIENCES ;

83, UNIVERSITY | AL Jg® - . ® 4TTPS.//RCFASHARVARDEDU

Additional FIags/Notes

Each compiler has a wealth of options and differences, so it is worth your time to look
at them, especially what options are being applied for 01-3

-xHost/-ax*/-march: These can be useful for chip specific optimization. However this
makes the code non-portable. If you can, grab the individual optimizations you want
rather than use -xHost

Intel vs. gcc vs. something else? Generally if you tune it correctly most compilers give
similar performance but the options may vary. That said some compilers, such as
Cray’s compiler, are superior in most cases but only available on Cray machines. In
general the Intel compiler works best out of the box, as gcc tends to include a bunch of
options as defaults that drag down code performance.

‘sazg HARVARD ' %277 < FAS RESEARCH COMPUTING
W onversity T FASIH]L‘ %, | ' . 4 DIVISIONOF SCENCES

General Code Optlmlzat|on Rules

HTTPS://RCFAS.HARVARD.EDU

Use the latest compilers and libraries

Leave informative comments in your code

Make sure your loops are ordered appropriately for your arrays
Avoid if statements buried in loops

Use temporary variables to hold math constants (such as pi), especially divisions or exponentials

Set your variables to the right precision/size: Single Precision math is faster than Double Precision math,
Integer math can be faster than Floating Point

Tt L oo [FASCTIe s ST
W= UNIVERSIHTYS . h _+ = ® HTTPS://RCFASHARVARD.EDU

General Code Optlmlzat|on Rules

Use timing print statements or profiler to isolate hot spots (i.e. where your code is spending most of its time).

- Intel compiler: -profile-loops, -profile-functions
- Intel VTune

- Tau

- Totalview

If you have a heavy arithmetic section consider using small temporary arrays for the data that you are manipulating
Lower your cache miss rate and try to operate in L2 cache as much as possible

Take advantage of automatic vectorization by writing your code to make it obvious to the compiler. Be sure to check
the optimization report and see if it worked as expected. Also make sure your loops contain as much math as

possible.

- https://software.intel.com/content/www/us/en/develop/articles/vectorization-essential.html

https://software.intel.com/content/www/us/en/develop/articles/vectorization-essential.html

‘@ HARVARD : FASH] """ .“ FAS RESEARCH COMPUTING
ol - “#fs . ', DIVISION OF SCIENCES ’
8. UNIVERSITY | ‘ k “ .. % HTTPS.//RCFASHARVARD.EDU

General Code Optlmlzat|on Rules

Be aware of the first touch rule for memory allocation and allocate arrays and variables you need frequently first.
Cut down your memory footprint as much as possible by removing extraneous temporary arrays and variables.
Avoid over abstraction, (i.e. pointers to pointers to pointers)

Be specific and well defined, amorphous or poorly structured code is hard to optimize.

Be up on the latest numerical methods and libraries for your discipline. Pick the right one for your code, this may not
be the most popular or most cutting edge. Brute force may actually be faster than a more nuanced approach.

When all else fails use Fortran with a good compiler...

‘mmpgm HARVARD A7 g : 2 el Tl - ° 1 ©l:7"" < FAS RESEARCH COMPUTING
R | B |
€8 UNIVERSITY . « %] FASIH]L. % . 4 DIVISION OF SCIENCES

: HTTPS:'//RC.FAS.HARVARD.EDU
Parallelism

Three Types of Parallelism

SIMD: Single Instruction Multiple Data

- Thread: Shared Memory
OpenMP
OpenACC
Cuda

Rank: Message Passing Interface

Hybrid: Thread + Rank

. - o - - s cm el

W civersn e . FASIH]x LT " . FAS RESEARCH COMPUTING
- L% 0 .. DIVISION OF SCIENCES ;
&8, UNIVERSITY | ‘ e Jn ' ¥ HTTPS://RCFASHARVARD.EDU

Code Improvement vs. Code Overhaul

There are two basic methods for optimizing your code

1. Scrutinize your current code base and make changes to improve
speed either by changing compilers or making tweaks to the code.
2. Complete overhaul of your code base.

Each has their advantages and disadvantages

‘sagg HARVARD 7 p - ' ol T - " 7 . . FAS RESEARCHCOMPUTING
T ' F ', DIVISION OF SCIENCES p

8%, UNIVERSITY | | . PLiL Jg® "~ . % UTTPS//RCFASHARVARDEDU

Code Improvement Code Overhaul %
Advantages Advantages
* Low Hanging Fruit e Can deal with real structural issues
* Fast * Allows changes to new numerical methods
 Minimal Changes and techniques

* Allows for adding parallelism
 Allows for a more cohesive whole that
takes a holistic view

Disadvantages Disadvantages
* Cannot deal with structural issues * Overhaul work can take 6 months to a year
 Whack-a-mole to complete depending on code complexity
* Cascade of changes * Neverending code development
* Can lead to spaghetti code that is disjointed * Requires a fundamental knowledge of the
and unreadable code and its inner workings

* Canintroduce unanticipated bugs

‘mamx HARVARD , g : A @ vl - ° 10" < FAS RESEARCH COMPUTING

€8 UNIVERSITY DIVISION OF SCIENCES

Next Stes

HTTPS://RCFAS.HARVARD.EDU

Research

Man pages
Intro to HPC: https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
Numerical Methods for Scientists and Engineers

. Code Libraries

Research Computing Help

RC Consulting
Research Software Engineering Services:
https://www.rc.fas.harvard.edu/research-software-engineering-rse

/[

https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
https://www.rc.fas.harvard.edu/research-software-engineering-rse/
https://www.rc.fas.harvard.edu/research-software-engineering-rse/

‘@@ HARVARD®& - . ' r| " 1. . FASRESEARCHCOMPUTING

| v B . .. b DIVISION OF SCIENCES * %
- UNIVEBSITY o B * ~ HTTPS://RCFASHARVARD.EDU |

' Questions? Comments?

FAS Research Computing
https://rc.fas.harvard.edu !

