-84 HARVARD
¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

Running Biology Workflows
on Odyssey

Bob Freeman, PhD

Dir. Research Technology Operations (HBS)
formerly RC Facilitator (FASRC)

robert freeman@harvard.edu
@ DevBizIinfoGuy

With thanks to and contributions from:
Amir Karger & Kris Holton, HMS RITG

-84 HARVARD
GoaIS 1“¥ Faculty of Arts and Sciences

RESEARCH COMPUTNG

Objectives
* Review the basics of our compute cluster Odyssey
* Use compute efficiently for typically inefficient programs or workflows

* Use Unix & programmingtechniquesto do bioinformatics more efficiently
e Bash: variables, for loops,
 SLURM: job arrays, job dependencies

* Parallelization approaches

Strategically

* “Work smarter, better, faster”

e ...andtoThink Differently

 Enableyouto be successful with your research!

Slide deck avail as PDF after class

Slide 2 FAS Research Computing

. a8 HARVARD
Ove rVIeW Faculty of Arts and Sciences

RESEARCH COMPUTNG

1. Clusterbasics
* Access, storage, software, partitions, resources

2. Usingsoftware
* Module system, Java & Python, Updating local modules/packages

Running multicore (multiCPU) jobs & Scaling considerations
Pleasantly parallelizing tasks (e.g. getting BLAST results fast!)
Checkpointingto save (re)compute time

SLURM scripts for common programs & typical workflows

N o U kW

Troubleshooting & Getting help

Slide 3 FAS Research Computing

General configuration... D

RESTARCH COMPJTNG

The basic computational unit in a cluster is a CPU core
 Eachcore runs one process, a average job

 Most compute nodes have 64 cores
arranged on 4 CPUs (16 cores/CPU)

* Thus, most nodes run 64 batch job processes

A typical compute node is configured:
* 64 cores
e 256 GB RAM, or ~4 GB RAM/core

* 2 network cards: Infiniband (intraconnect) & xGb
connections (interconnect)

 Small, local hard disk/SSD for boot and local /scratch

All cores on a node share all other resources of the
node: memory, network bandwidth, etc.

Thus, how you use these resources affects the other
63 jobs on that compute node

Slide 4 FAS Research Computing \

What is Odyssey?

Compute nodes/disk are located in 3 data centers:

Greenfield

Pl nodes
~200 x 8-64 cores
8-512 GB RAM
Pl queue

holy2x####
255 x 64 cores
256 GB RAM
general

holybigmem
8 x 64 cores

512 GB RAM
bigmem

holygpu
16 x 16¢ 4992gpu
32 GB RAM

gpgpu

/n/regal
1.2PB
no quota; retention

Somers

Nichewaut

ston

MGHPCC, Holyoke MA

Topology may effect the efficiency of work

Slide 5

Auburn

rclogin##

iy HARVARD
oo

60 Oxford Street

Blookline

Faculty of Arts and Sciences
RESEARCH COMPUTNG

Bo@on

|
[}
|
[}
|
[}
|
[}
|
Framinjgharh
aster anc L Infabs
| ~1PB Milfpn L QuIn
Pl nodes | Wy Tells
/1 ~200 x 8-64 cores !
8-512 GB RAM :
lldtete | /n/home###
D _ Isilon 780 TB 2
Mitford | 40 GB quota el
X -
. |
ol rclogin##] Brocktc
A 1 rcnx01
Dougla [}
Qo nor i tasto

1 Summer Street

FAS Research Computing)

Typical Workflow s I

RESEARCH COMPUTNG

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

1. Login in to Odyssey
a. Land on alogin (head) node, appropriate for light work only
. Copy/upload/download some files
Load appropriate software
Get interactive session
. Test your program/script interactively to ensure it runs properly
Test run in batch: create batch file & submit to SLURM

a. Continue working in the foreground while waiting for results

o> VA W N

7. Scale up as necessary (10s, 100s, 1000s)

a. With caveats: proper file placement, # cores, etc.

Slide 6 FAS Research Computing

Data Security: Storage/Use of HRCI & il

RESTARCH COMPUTNG

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

Confidential data is defined as

"Information about a person or an entity that, if disclosed, could reasonably be expected to place the person
or the entity at risk of criminal or civil liability, or to be damaging to financial standing, employability,
reputation or other interests."

See HU’s IT Security pages for methods for handling & network access: http://security.harvard.edu/

Under no circumstances should HRCl data be stored on RC storage without consultation. Storage
must be specifically designed for HRCI data: http://fasrc.us/data_hrci

Working on restricted datasets (e.g. dbGAP or CMS)?
* Set up afollow-up appointment with RC

* Requires discussion and training on facilities you/Plcan access under the University Data Usage
Agreement (DUA) process

o DUAs: Important documents signed by Pl and Asst. Dean of RC to protect important datasets
o Eachdataset / DUAmust be handled in a uniqgue manner

* http://vpr.harvard.edu/pages/harvard-research-data-security-policy

Your Pl must brief you on training for these datasets and how they need to be controlled

Slide 7 FAS Research Computing

Transferring files to/from Odyssey e i e

RESTARCH COMPUTNG

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

GUI client Filezilla for all platforms
e Configure according to http://fasrc.us/configfilezilla to avoid 2FA problems

Command line tools scpor rsync
 rsyncis best for resuming transfers or transferring only changed file parts

Download data using curl or wget @

e s available on all compute nodes, though web proxy needed for HRCI setups @

Or by mountings disk shares. Please see http://fasrc.us/mountdisks

Examples:

copy file in current dir to Odyssey home folder
scp somefile.txt rcuser@login.rc.fas.harvard.edu:~

copy folder in current dir & contents to Odyssey home folder
rsync -av myfolder rcuser@login.rc.fas.harvard.edu:~

download FASTA sequence from NCBI
wget "http://www.ncbi.nlm.nih.gov/nuccore/L03535.1%report=fasta&logS=seqgviews&format=text"

Slide 8 http://fasrc.us/transferringfiles FAS Research Computing 4

Common Filesystems ol

RESTARCH COMPUTNG

Login _ Load Software Choosing Resources Interactive/Submit Jobs

1/0
profile

. Mount .
Avail? Backup?! Retention?

Desktops?

/n/home## NFS 40 GB (hard limit) all nodes Y Y N low

1 TB free (new labs)

/n/labfs# NFS all nodes Y Y? N low
contact for costs
250 GB/node .
/ tch 3
scratc local (~4 GB/core) all nodes N N Y high
/n/regal Lustre 1.2 PB all nodes N4 N 90-days® | high

1Backup methods differ. See http://fasrc.us/fagrecovery for more information.
2Lab disks shares are typically backed up unless noted.
3Files usually deleted when job finished. Please clean up your own mess, though.
4Can use file transfer methods to stage data.
>Retention is typically run at maintenance times. Areas can be exempted for common data
(e.g. NCBI Genbank at /n/regal/informatics public). Contacts us.
Slide 9 http://fasrc.us/odysseystorage FAS Research Computing

Common Filesystems: /scratch el O

RESTARCH COMPJTNG

Login _ Load Software Choosing Resources Interactive/Submit Jobs

Using local /scratch:
e 250 GB slice on each compute node, so there’s about 4 GB disk space/job

e |s currently underutilized, so more space may be available (check sbatch options)
e Cansee speedup of 2x — 3x, depending on pattern of file read/writes
e Since is local to each node, must use it during your job:

start dir=$PWD
mkdir -p /scratch/$USER/$SLURM JOBID
cd /scratch/$USER/$SLURM JOBID

do your work while writing temp files here

copy files back and return from whence we came
cp —r results/ $start dir/
cd $start dir

now cleanup
rm -rf /scratch/$USER/$SLURM JOBID

Slide 10 http://fasrc.us/odysseystorage FAS Research Computing)

Common Filesystems: /n/regal D e

RESTARCH COMPUTNG

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

Using /n/regal:

e Most work should be done here, especially for ~¥> 10 simultaneous jobs

* No space restrictions, but files > 90 days old deleted (usually at maintenance)
e Canstage files prior to job by typical copy/rsync commands or Filezilla

e Remember to copy results back to home or lab shares
for permanent storage

A couple more things to remember: h’

e Shared lab areas can be exempt from retention. Contact us.

e Public data sets canalso be staged here — —
no need to keep your own copy 0ST
e NCBI, EMBL, UCSC data is stored at ‘ o

/n/regal/informatics public:
e FASTA data, BLAST databases, Bowtie2 indexes
e Contact us if you'd like to add more to this location

Lustre
Clients

TosT
N

Lustre Servers

)
g

Slide 11 http://fasrc.us/odysseystorage FAS Research Computing

Login vs Interactive Nodes D e

RESTARCH COMPUTNG

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

Terminal sessionsto login.rc putsyouonone of several login nodes
e Thisgateway to the cluster haslimited entry points, so..
e Only non-CPU-intensive workis appropriate: cp, mv, nano, rsync, etc.

e Reminder:rcnx01 and holynx01 are login nodes

Don’t compute here, instead
e Submita batch job (background task) to SLURM, or
e Requestan interactive session (foreground task) on a compute node:

srun —--pty --xll=first --mem 1000 -p interact -t 0-6:00 -n 1 -N 1 /bin/bash

] —
srun: foreground Resources that you wish to Script or program
sbatch: background request from SLURM /bin/bash == shell

Slide 12 http://fasrc.us/interactivejob FAS Research Computing

Choosing Resources: How? D e

RESTARCH COMPJTNG

Login Place Files Load Software _ Interactive/Submit Jobs

Choosing resources is like attending a party:

* You need to RSVP the number of guests you intend to bring
Request the resources you intend to use

e Extra guests: there’s not enough food and drink for everyone
CPU/disk overage: all jobs including your will run more slowly
RAM/time overage: your job will be killed

e Too few: anunhappy host and wasted $S/ effort
CPU/RAM: resources are wasted as they cannot be used by

anyone else
All: your job becomes harder to schedule

You also want to be polite:

e Stay the appropriate amount of time...
Try to approximate your resource use with some padding for

safety

e Don’tslipin, drink & eat, and leave within minutes
Try to avoid jobs that start and complete within minutes;
especially in large numbers

Slide 13 FAS Research Computing 48

: - T E¥1 HARVARD
Choosing Resources: Time & Memory © ruiyeas s
Login Place Files Load Software Choosing Resources Interactive/Submit Jobs
/ 5\
Time:

e Determined by your test runs during an interactive session
e Orif trying in batch, over-ask first, then reduce time on later runs
e Due to scheduler overhead, jobs should do at least 5-10 min of work

Memory:

e Check software docs for memory requirements

e If none stated, over-ask and do a trial run (via srun or sbatch)
e use sacct command to get post-run job info:

RAM requested/used!!
sacct -j JOBID --format=JobID,Elapsed,RegqMem,MaxRSS

“Never use a piece of bioinformatics software for the first time without looking to see what
command-line options are available and what default parameters are being used”

--acgt.me - by Keith Bradnam

Slide 14 FAS Research Computing

Choosing Resources: Partitions il

RESTARCH COMPUTNG

Login Place Files Load Software _ Interactive/Submit Jobs

interact 3 days 512 (8 nodes) 256 GB all interactive work

best for single core jobs; or small

serial requeue 7 davs* 30K+ varies numbers of cores for short durations;
-red y (512 GB max) schedules best as hits all parts of the

cluster

T e ~14K 256 GB large # of cores; MPI jobs;jobs
sensitive to pre-emption (pipelines)

unrestricted no limit 512 256 GB all jobs with no time limit

Biemem o 512 512 GB jobs requiring >256 GB RAM
(restricted access)

(private) no limit varies 256 GB typical lab-specific partitions

Note: SLURM can schedule to quickest of two partitions with -p partionl,partion?

Slide 15 http://fasrc.us/slurmpartitions FAS Research Computing

Choosing Resources: Partitions

-84 HARVARD
1“¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

interact

e Use for foreground, interactive sessions up to 2 days
e You can request multiple cores or large RAM
e Limit the number of active, interactive session to 5 or less

(private)
e Pl-specific partitions, usually named after the lab
e Access is automatic, by group membership

bigmem
e For work where each job requires > 256 GB RAM

e Accessible only by request

general

e For all large core #, long, or MPI jobs, or jobs sensitive to pre-emption

e When busy, typically will take tens of minutes or hours to schedule
e Requesting full nodes may take >1 day for your job to schedule

Slide 16 http://fasrc.us/slurmpartitions

FAS Research Computing

Choosing Resources: Partitions P

RESEARCH COMPUTNG

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

serial_requeue

e Recommended partition for single-core jobs; or jobs using up to 8 cores lasting up to
approx. 6 —12 hrs

e Most ‘powerful’ as hits every core on the cluster, including private compute
e Dispatches within seconds to minutes

But the downside...

e Jobs may be pre-empted (killed) if originally scheduled on a private node and the
node owner submits work. Your job is automatically rescheduled

To mitigate this...
e Use the sbatch option --open-mode=append for your -e and -o log files
e Use 2N (in addition to %j) in log file names to indicate what host your job ran on.

e |fyou append output, ensure that you zero your data files at the start of the job, to
ensure that any files left over from a previous, partial run are removed.

e Structure your command flow so that you skip over any work already done. This
allows your re-run job to pick up from where the pre-empted one left off.

Slide 17 http://fasrc.us/slurmpartitions FAS Research Computing

. a8 HARVARD
Ove rVIeW Faculty of Arts and Sciences

RESEARCH COMPUTNG

1. Clusterbasics
* Access, storage, software, partitions, resources

2. Usingsoftware
* Module system, Java & Python, Updating local modules/packages

Running multicore (multiCPU) jobs & Scaling considerations
Pleasantly parallelizing tasks (e.g. getting BLAST results fast!)
Checkpointingto save (re)compute time

SLURM scripts for common programs & typical workflows

N o U kW

Troubleshooting & Getting help

Slide 18 FAS Research Computing

Lmod Module System e

RESTARCH COMPUTNG

Software is loaded incrementally using modules, to set up your shell environment (e.g.
PATH, BLASTDB, and other environment variables)

Using the Harvard-modified, TACC module system Lmod:
* New system is still opt-in. Strongly suggested reading: http://fasrc.us/rclmod

source new-modules.sh # for opt-in folks
module load fastqgc/1.0.0-fasrcO0l # recommended!!
module load fastqgc # most recent version

module-query fastgc recommended!!

module-query —--full-text fastqgc gives more detail

find details on software
find titles/defaults

module spider fastgc

#
#
#
module avail 2>&1 | grep -i fastqgc #

Software search capabilities similar tomodule—-query are also available on the RC Portal!

Module loads best placed in SLURM batch scripts:
e Keeps your interactive working environment simple

e Isarecord of your research workflow (reproducible research!)
e Keep .bashrc moduleloads sparse, lest you run into software and library conflicts

Slide 19 http://fasrc.us/rcimod FAS Research Computing

Java Programs L

RESTARCH COMPUTNG

FASRC will no longer install Java apps and Python scripts
* they will probably not work correctly in read-only sections of the cluster
* Python scripts use pip-install or python setup.py & doesn’t work with some setups

For Java...

e Download the *.jar filesor the install files into a home or lab apps/ orbin/ directory
® Include the java CLASSPATH statement in your .bashrc, OR

e Set up a bash environment variable inyour .bashrc

e Call the software using the java command, pointing to the appropriate routine

cd ~

mkdir -p apps; cd apps

wget http://..longURL../Trimmomatic-0.36.zip

unzip Trimmomatic-0.36.zip

In -s Trimmomatic-0.36 trimmomatic

echo "export TRIMMOMATIC=S$HOME/apps/trimmomatic" >> ~/.bashrc

in SLURM script or on command line..
module load java/1.8.0 45-fasrcOl
cd ~/myFASTQdirectory; mkdir trimmed

minHeap (-Xms) and maxHeap (-Xmx) options are optional but useful in some cases!!
java -Xms128m -Xmx4g -jar $TRIMMOMATIC/trimmomatic-0.32.jar SE -threads 1 \
PSG177 TGACCA.fastqg.gz trimmed/PSG177 TGACCA.fastqg
TLLUMINACLIP:TruSeq3-PE.fa:2:40:15 LEADING:3 TRAILING:3 \
SLIDINGWINDOW:4 :20 MINLEN:25

Slide 20 http://fasrc.us/installsw FAS Research Computing

Python Programs

For Python we recommend:

Slide 21

module load python/2.7.6-fasrc01
conda create -n ENV NAME --clone="$PYTHON HOME”

load in environment
source activate ENV NAME

load in new package
conda install MYPACKAGE

update a specific package
'remove' first if you hit update problems
conda update MYPACKAGE

other methods after source activate

pip install MYPACKAGE
python setup.py install MYPACKAGE

http://fasrc.us/installsw

#
i

-84 HARVARD
¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

Use the standard module load python/2.7.6-fasrc01 for pullingin default modules
Use the Anaconda environment for customizing modules & versions

Multiple custom environments can be set up for home or lab folders (e.g. development or
production code). Check conda options for 'non-standard' locations

for any python wversion
created at ~/env/ENV NAME

local environment is default

replace MYPACKAGE

FAS Research Computing

R / Python / Perl Libraries B D e

RESTARCH COMPUTNG

We've already covered Python libraries. R and Perl are much simpler!

R: Use the R_LIBS_USER environment variable...

load R, default packages, & set local install dir (must already exist!)
module load R packages/3.2.0-fasrc01l

can put this in .bashrc, but best to do this after R module load
export R LIBS USER=$HOME/apps/R:$R _LIBS USER

#

R

install.packages('deplyr') # inside R

For Perl, we can do the same thing!

load Perl, default modules, & set local install dir (must already exist!)
module load perl-modules/5.10.1-fasrcll

can put these in your .bashrc

export LOCALPERL=S$HOME/apps/perl

export PERL5LIB=$LOCALPERL:SLOCALPERL/1ib/per15:S$SPERL5LIB
export PERL MM OPT="INSTALL BASE=S$LOCALPERL"

export PERL MB OPT="--install base $LOCALPERL"

export PATH="SLOCALPERL/bin:S$PATH"

and now do easy, local installs with cpan
cpan FASTAParse

Slide 22 http://fasrc.us/installsw FAS Research Computing 48

Installing Your Own Software P

RESTARCH COMPUTNG

e Users can compile software in their /home or /groups directories, where they have
permission
* Binaries just require “unzipping” (ie tar -zxvf *.tgz)

« Common compiling libraries are found as modules:

gcc/4.8.2-fasrc01
intel/15.0.0-fasrc01l
boost/1.59.0-fasrc01

gcc/4.8.2-fasrc0l 11vm/3.5.1-fasrc02

gcc/4.8.2-fasrc0l openmpi/1.8.3-fasrc02
gcc/4.8.2-fasrc0l mvapich2/2.0-fasrc03

« Common math libraries are also present but may be compiler-specific
gcc/4.8.2-fasrc0l intel-mkl/11.0.0.079-fasrcO01l

Slide 23 http://fasrc.us/installsw FAS Research Computing

Installing a Binary e

RESTARCH COMPUTNG

» Users can place software in their /home or /groups directories, where they have
permission
* Binaries just require “unzipping” (ie tar -zxvf .tgz)

cd ~
mkdir -p apps; cd apps
wget http://..longURL../myBinarySoftware-1.0.tgz

tar -xvf myBinarySoftware-1.0.tgz
1ls myBinarySoftware-1.0
In -s myBinarySoftware-1.0 myBinarySoftware

add to .bashrc; assumes all binaries are in top level of this folder
echo "export PATH=$HOME/apps/myBinarySoftware:$PATH" >> ~/.bashrc
export PATH=SHOME/apps/myBinarySoftware:S$PATH

and now run it!
myBinary

Slide 24 http://fasrc.us/installsw FAS Research Computing 4

Installing from Source D e

RESTARCH COMPUTNG

» Users can compile software in their /home or /groups directories, where they have
permission
* Source requires untaring and (often) selecting a compiler

cd ~
mkdir -p apps; cd apps
wget http://..longURL../myBinarySoftware-1.0.tgz

tar -xvf myBinarySoftware-1.0.tgz
ls myBinarySoftware-1.0
In -s myBinarySoftware-1.0 myBinarySoftware

cd myBinarySoftware
less README

module load gcc/4.8.2-fasrc01

./configure --prefix=S$HOME/apps/myBinarySoftware
make

make install

add to .bashrc; assumes all binaries are in top level of this folder
echo "export PATH=S$HOME/apps/myBinarySoftware:$SPATH" >> ~/.bashrc
export PATH=$HOME/apps/myBinarySoftware:$PATH

and now run it!

myBinary

Slide 25 http://fasrc.us/installsw FAS Research Computing 48

. a8 HARVARD
Ove rVIeW Faculty of Arts and Sciences

RESEARCH COMPUTNG

1. Clusterbasics
* Access, storage, software, partitions, resources

2. Usingsoftware
* Module system, Java & Python, Updating local modules/packages

Running multicore (multiCPU) jobs & Scaling considerations
Pleasantly parallelizing tasks (e.g. getting BLAST results fast!)
Checkpointingto save (re)compute time

SLURM scripts for common programs & typical workflows

N o U kW

Troubleshooting & Getting help

Slide 26 FAS Research Computing

Serial vs Multicore Approaches D e

RESTARCH COMPUTNG

Traditionally, software has been written for serial computers

e To be run on a single computer having a single Central Processing Unit (CPU)
Problem is broken into a discrete set of instructions
Instructions are executed one after the other

One one instruction can be executed at any moment in time

problem

instructions

N 3 2 t1

FAS Research Computing

Slide 27

Serial vs Multicore Approaches D e

RESTARCH COMPUTNG

In the simplest sense, parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem:

e To be run using multiple CPUs

A problem is broken into discrete parts that can be solved concurrently
Each part is further broken down to a series of instructions

Instructions from each part execute simultaneously on different CPUs

problem instructions
tN t3 t2 t1

Slide 28 FAS Research Computing)

llllll

Serial vs Multicore Approaches e

RESEARCH COMPUTNG

Many different parallelization approaches, which we won't discuss:

network

Shared memory Distributed memory

Hybrid Distributed-Shared memory

Slide 29 FAS Research Computing)

“““““

Multicore Options in R, Python, & Perl & La i s

RESTARCH COMPUTNG

In order to run in parallel, programs (code) must be explicitly programmed to do so.
Thus, requesting cores from the scheduler does not automagically parallelize your code.

#!/bin/bash

#

#SBATCH -p serial requeue # Partition to submit to (comma separated)
#SBATCH -J frog blast # Job name

#SBATCH -n 8 # Number of cores

#SBATCH -N 1 # Ensure that all cores are on one machine

module load ncbi-blast/2.2.31+-fasrc01
blastn —query segs.fasta -db nt —-out segs.nt.blastn # WRONG!'!
blastn -query segs.fasta -db nt -out segs.nt.blastn —num_ threads $SLURM NTASKS # YES!!

By default, R, Python, and Perl are not multithreaded ... so do not ask for >1 core.

e For R, you can use appropriate routines with Rparallel, Rforeach, RdoMC, or Rsnow
e For Python, you can use the multiprocessing library (or many others)
e For Perl, there's threads or Parallel::ForkManager

R example
library (doMC)
mclapply(seq len(), run2, mc.cores = Sys.getenv('SLURM NTASKS'))

Slide 30 http://fasrc.us/installsw FAS Research Computing

Scaling Tests Ensures Efficiency

Not all programs can be scaled well. This is due to

i HARVARD

Faculty of Arts and Sciences
RESTARCH COMPUTNG

4
&3

e Overhead of program start

e Overhead of communication between processes (threads) within the program
e (worse:) Waiting to write to the network or disk (I/0)

[J

Other, serial parts of the program (parts that cannot be parallelized)

Scaling tests are important to help you determine the optimal # of cores to use!!

~N
©

|
v iy

log scale)

NN
o N NN
—

NN
[

~N
-

=}
T

Average iteration speedup (
N t\L NN

1 2 4 8 16 32 64 128
Number of processors

Slide 31

perfect scalability -+~

256

512

Scalability Analysis, 10K Matrix, 1 Node

MPI Processes

12

14

FAS Research Computing)

W Nehalam -
Bluewave

Il Westmere -
Bluegnt

M nNehalem -
Bluegrit

W sandy Bricge -
Discover

I Phi-Auto Offload
-Discover

W Westmere -
Discover

W \deal

.
mn

Your Own Scaling Tests! e

RESTARCH COMPUTNG

Create a SLURM script for an analysis that can be used for multiple CPU (core) values

Input segs.fa file has 350 FASTA sequences SO we can get good parallelization values:

-— file: blast scale test.slurm ---

#!/bin/bash

#

#SBATCH -p serial requeue
#SBATCH -J blastx

#SBATCH -N 1

#SBATCH -t 0-4:00

#SBATCH —-mem 10000

#SBATCH --mail-type=END,FAIL

A e T

Partition to submit to (comma separated)

Job name

Ensure that all cores are on one machine
Runtime in D-HH:MM (or use minutes)

Memory pool in MB for all cores

Type of email notification: BEGIN, END, FAIL,ALL

source new-modules.sh; module load ncbi-blast/2.2.31+-fasrc01l
export BLASTDB=/n/regal/informatics public/

blastx -in segs.fa -db $BLASTDB/custom/other/model chordate proteins \
-out sk shuffle segs.n${l}.modelchordate.blastx -num_ threads $1

and now submit file multiple times with different core values

for i in 1 2 4 8 1l6; do
echo $1i

sbatch flags here will override those in the SLURM submission script
sbatch -n $§i -J blastx$i -o blastx n$i.out -e blastx nfi.err blast scale test.slurm $i

sleep 1
done

Slide 32

FAS Research Computing \

Your Own Scaling Test Results! il O

RESTARCH COMPJTNG

[bfreeman@rclogin04 ~]$ sacct -u bfreeman -S 4/6/16 --format=jobid,\
elapsed,alloccpus,cputime,totalcpu,state

JobID Elapsed AllocCPUS CPUTime TotalCPU State
59817008 16:12:26 1 16:12:26 16:03:34 COMPLETED
59817024 10:49:16 2 21:38:32 17:53:07 COMPLETED
59817026 06:03:38 4 1-00:14:32 15:56:55 COMPLETED
59817028 04:55:44 8 1-15:25:52 21:27:30 COMPLETED
59817043 03:01:51 16 2-00:29:36 1-01:33:03 COMPLETED
59847485 02:04:58 32 2-18:38:506 1-11:42:36 COMPLETED

1 2 4 8 16 32

Elapsed 16:12:26 10:49:16 6:03:38 4:55:44 3:01:51 2:04:58

Ideal 16:12:26 8:06:13 4:03:07 2:01:33 1:00:47 0:30:23

CPUTime 16:12:26 21:38:32 24:14:32 39:25:52 48:29:36 66:38:56

Ideal 16:12:26 16:12:26 16:12:26 16:12:26 16:12:26 16:12:26

NoGain 16:12:26 32:24:52 64:49:44 129:39:28 259:18:56 518:37:52

TotalCPU 16:03:34 17:53:07 15:56:55 21:27:30 25:33:03 35:42:36

Ideal 16:03:34 16:03:34 16:03:34 16:03:34 16:03:34 16:03:34

NoGain 16:03:34 32:07:08 64:14:16 128:28:32 256:57:04 513:54:08

Slide 33 FAS Research Computing \

Your Own Scaling Test Results! D e

RESTARCH COMPUTNG

0:00:00 T T T T T 1
1 2 4 8 16 32 32
Elapsed 16:12:26 10:49:16 6:03:38 4:55:44 3:01:51 2:04:58
Ideal 16:12:26 8:06:13 4:03:07 2:01:33 1:00:47 0:30:23
CPUTime | 16:12:26 21:38:32 24:14:32 39:25:52 48:29:36 66:38:56
Ideal 16:12:26 16:12:26 16:12:26 16:12:26 16:12:26 16:12:26
NoGain 16:12:26 32:24:52 64:49:44 129:39:28 259:18:56 518:37:52 2:24:00
TotalCPU | 16:03:34 17:53:07 15:56:55 21:27:30 25:33:03 35:42:36
Ideal 16:03:34 16:03:34 16:03:34 16:03:34 16:03:34 16:03:34
NoGain 16:03:34 32:07:08 64:14:16 128:28:32 256:57:04 513:54:08 —Elapsed
eams|deal
0:14:24
2400:00:00 2400:00:00
emms|deal esmm|deal
240:00:00 NoGain 240:00:00 NoGain
24:00:007 I 24:00:00 m
2:24:00 2:24:00

Slide 34 FAS Research Computing

Mixed Multicore and Serial Workflows ® fai i mscec

RESTARCH COMPJTNG

Choosing core count can be difficult, especially if there's a mix of serial and parallel
steps....

Slide 35

Think about how long your code will be in either modes
Determine the fraction resource use across the whole job

If <20% in multicore use, then split up the tasks into two separate jobs
Can use job dependencies to make submission easier

OK, can run as one long job

. a8 HARVARD
Ove rVIeW Faculty of Arts and Sciences

RESEARCH COMPUTNG

1. Clusterbasics
* Access, storage, software, partitions, resources

2. Usingsoftware
* Module system, Java & Python, Updating local modules/packages

Running multicore (multiCPU) jobs & Scaling considerations
Pleasantly parallelizing tasks (e.g. getting BLAST results fast!)
Checkpointingto save (re)compute time

SLURM scripts for common programs & typical workflows

N o U kW

Troubleshooting & Getting help

Slide 36 FAS Research Computing

Concept of Pleasant Parallelization D

RESTARCH COMPUTNG

Problem: How do | BLAST 200,000 transcripts against NR?
Solution: Fake a parallel BLAST. But how? DECOMPOSE

e Divide your input file into n separate files

e BLAST each smaller input file on a separate core

e Running on n cores will be almost exactly as ntimes faster!
Why?

e Eachcore doesn't need to talk to one another

e You could subrr.nt.n jobs |nd|V|fjuaIIy, but not recommended rask || Task | Task || Task || TasK || Task
e Use more sophisticated techniques:

job arrays, gnu_parallel, GridRunner
e Shouldn't confuse this with truly parallel mpiBLAST

The efficiency of your work depends on how parallelized

you make your task:

* You want to ensure that your jobs spend most of their time COMPOSE
computing, and not in the queue or doing compute prep

schedule module load BLAST Job finish

versus schedule module load BLAST Job finish X 100?? What would you choose?

Slide 37 FAS Research Computing

Manual (Script) Approach D

RESTARCH COMPJTNG

Split input file into N files that run 1 to 6 hrs each
can be done with perl or python script, scriptome, or fasta tool

create SLURM script for job array (nano blast array.slurm)

-- file: blast_array.slurm ---
#!/bin/bash

#SBATCH --open-mode=append # ensure output files are not overwritten
#SBATCH -p serial requeue # Partition to submit to (comma separated)
#SBATCH -J blastn array # Job name

#SBATCH -n 1 # Number of cores

#SBATCH -N 1 # A1l cores on one machine

#SBATCH -t 0-1:00 # Runtime in D-HH:MM (or use minutes)

#SBATCH —-mem 2000 # Memory in MB

#SBATCH -e blastn_ %A %a.err # STDERR. %A 1is jobID, %a is 1 2 3 4 etc

#SBATCH --mail-type=FAIL # Type of email notification: BEGIN, END, FAIL,ALL
#SBATCH --mail-user=rmf@l23.com # Email to which notifications will be sent

#

#SBATCH -0 seqgs_%a.nt.blastx STDOUT. %a is 1 2 3 4 etc

+=

source new-modules.sh; module load ncbi-blast/2.2.31+-fasrcO1l
export BLASTDB=/n/regal/informatics public/ref/

sleep random # seconds do that all jobs don't hit nt at once
sleep $[(SRANDOM % $SLURM;ARRAY_TASK_MAX) + 1]s
blastn —query seqgs $SLURM ARRAY TASK ID.fasta —-db $BLASTDB/ncbi/nt/nt

and now submit file as job array

sbatch --array=1-N blast array.slurm

Slide 38 FAS Research Computing x

GnuParallel Approach D e

RESTARCH COMPJTNG

Split input file into N files that run 1 to 6 hrs each
create list of commands to be executed in a text file

create SLURM script for parallel execution on one machine (NB!)

-- file: blast gnu parallel.slurm ---
#!/bin/bash
#SBATCH --open-mode=append
#SBATCH -p serial requeue
#SBATCH -J blastn gnu parallel
#SBATCH -n 16
#SBATCH -N 1
#SBATCH -t 0-6:00
#SBATCH —--mem 64000
#SBATCH —-o blast gp %Jj.out
#SBATCH -e blast gp %Jj.err
#SBATCH --mail-type=FAIL

ensure output files are not overwritten
Partition to submit to (comma separated)

Job name

Number of cores

All cores on one machine

Runtime in D-HH:MM (or use minutes)

Memory pool for all cores

STDOUT. %j is jobID

STDERR. %j is jobID

Type of email notification: BEGIN, END, FAIL,ALL

S S o S S S e S e S

module load parallel/20160322-fasrc0Ol1l
log="basename $1°

parallel -joblog $log.log --outputasfiles —-j$SLURM NTASKS :::: $1

and now submit file to run on one machine

sbatch blast gnu parallel.slurm my job list.txt

Slide 39

GridRunner Approach D e

RESTARCH COMPJTNG

Trinity-based grid scheduler to run FASTA file thru analyses by pleasant parallelization

Install GridRunner in $HOME/apps and create grid.conf file that has configuration info

-- file: blast gridrunner.slurm ---
#!/bin/bash
#SBATCH -p general
#SBATCH -J blastn gridrunner
#SBATCH -n 1
#SBATCH -N 1
#SBATCH -t 0-6:00
#SBATCH —--mem 1000
#SBATCH -o blast gr %j.out
#SBATCH -e blast gr %j.err
#SBATCH —--mail-type=FAIL

Partition to submit to (comma separated)

Job name

Number of cores

All cores on one machine

Runtime in D-HH:MM (or use minutes)

Memory in MB

STDOUT. %j is jobID

STDERR. %j is JjobID

Type of email notification: BEGIN, END, FAIL,ALL

SR TS

module load ncbi-blast/2.2.31+-fasrc01l
export BLASTDB=/n/regal/informatics public/ref

this splits input FASTA file and starts watcher/dispatcher script
SHOME /apps/BiolIfx/hpc FASTA GridRunner.pl \
--cmd template "blastp -query = QUERY FILE -db $BLASTDB/ncbi/swissprot/swissprot\
-max_target segs 1 -outfmt 6 -evalue le-5" \
--query fasta test.pep \
-G odyssey.grid.conf \

-N 10 -O test blastp search

and now submit file to run on one machine

sbatch blast gridrunner.slurm

Slide 40 http://hpcgridrunner.github.io/ FAS Research Computing)

GridRunner Approach D e

RESTARCH COMPJTNG

Trinity-based grid scheduler to run FASTA file thru analyses by pleasant parallelization

Install GridRunner in $HOME/apps and create grid.conf file that has configuration info

grid type:
grid=SLURM

template for a grid submission: YOU WILL NEED TO TEST AND SET THESE OPTIONS
TIME WILL DEPEND ON THE cmds per node
cmd=sbatch -p general --mem=4000 --time=02:00:00

number of grid submissions maintained at steady state by the Trinity submission system
max nodes=1000

number of commands that are batched into a single grid submission job.

YOU WILL NEED TO TEST AND SET THESE OPTIONS
cmds per node=60

Slide 41 http://hpcgridrunner.github.io/ FAS Research Computing x

. a8 HARVARD
Ove rVIeW Faculty of Arts and Sciences

RESEARCH COMPUTNG

1. Clusterbasics
* Access, storage, software, partitions, resources

2. Usingsoftware
* Module system, Java & Python, Updating local modules/packages

Running multicore (multiCPU) jobs & Scaling considerations
Pleasantly parallelizing tasks (e.g. getting BLAST results fast!)
Checkpointingto save (re)compute time

SLURM scripts for common programs & typical workflows

N o U kW

Troubleshooting & Getting help

Slide 42 FAS Research Computing

Checkpointing L

RESEARCH COMPUTNG

e Saves the process of running application to a file, to be restarted later if necessary
» Safeguard long-running jobs, esp. on problematic systems or across cluster outages
e Functionality must be compiled into your source code

On SLURM, Use the Berkeley Lab Checkpoint/Restart (BLCR)
e Plug-in must be installed and enabled on cluster
e Features:

1. Checkpoint of whole batch jobs in addition to job steps

2. Periodic checkpoint of batch jobs and job steps

3. Restart execution of batch jobs and job steps from checkpoint files
4. Automatically requeue and restart the execution of batch jobs upon node failure

General mode of operation is to

1. Start the job step using the srun cr command.
2. Create a checkpoint of srun cr using BLCR's cr checkpoint command and cancel the job. srun cr
will automatically checkpoint your job.

3. Restartsrun cr using BLCR's cr restart command. Job will be restarted using a newly allocated
jobid.

Checkpoint/blcr can create checkpoints for both interactive and batch steps, but only batch jobs can
be restarted.

BLCR operation has been verified with MVAPICH2. Some other MPI implementations should also
work.

See the SLURM docs at http://www.schedmd.com for more details

Slide 43 FAS Research Computing

. . a8 HARVARD
CheCprIntlng Faculty of Arts and Sciences

For those not writing C or Fortran, there are other & 'poor man' approaches...

e Some applications already have checkpointing built in:
1. Guassian
2. Abaqus
3. Molpro
e DMTCP tool can checkpoint state of programs, including multi-threaded & distributed apps

e Save the program state ina 'state' file on a periodic basis
e Use serialization tools to periodically save all program variables on periodic basis
e (Can use same tools to load state back in after restart

e Trap Unix signals (e.g. SIGKILL, SIGSTOP) to get notification from the OS
e (Can be written into scripting languages R, Perl, Python, bash, etc.

e Ask SLURM to send signals to your running code before killed

e Canuse 'file completion breadcrumbs' to restart work after parts have been completed

For more information, see http://www.cism.ucl.ac.be/Services/Formations/checkpointing.pdf

Slide 44 FAS Research Computing

e HARVARD

Checkpointing: 'poor man' Approach

RESTARCH COMPJTNG

#!/bin/bash
#SBATCH stuff goes here
module stuff goes here

do some work, ensuring that we are 'checkpointing' along the way
SCRATCH=/n/regal/freeman lab/bfreeman

startdir=$PWD

cd $SCRATCH/runl/

if [! -e partl.finished]; then
if our partl.finished doesn't exist, then do this work..
cp S$HOME/runl/myfile. fastqg.gz
gunzip myfile.fastqg.gz

touch partl.finished

fi

if [! -e part2.finished]; then
if our part2.finished doesn't exist, then do this work..
fastgc --outdir fastgc data —-threads 1 myfile.fastqg
touch part2.finished

fi

let's go back from whence we started...
cd S$startdir

Slide 45 FAS Research Computing)

. a8 HARVARD
Ove rVIeW Faculty of Arts and Sciences

RESEARCH COMPUTNG

1. Clusterbasics
* Access, storage, software, partitions, resources

2. Usingsoftware
* Module system, Java & Python, Updating local modules/packages

Running multicore (multiCPU) jobs & Scaling considerations
Pleasantly parallelizing tasks (e.g. getting BLAST results fast!)
Checkpointingto save (re)compute time

SLURM scripts for common programs & typical workflows

N o U kW

Troubleshooting & Getting help

Slide 46 FAS Research Computing

Example SLURM Scripts L

RESTARCH COMPUTNG

« Demonstrate the various ways of using SLURM for bioinformatics workflows
 Canbe used as templatesforthe various types of work that you wishto do

Program Techniques

Multicore BLAST Basic multicore application; using bash variables for file paths

Bowtie + Samtools Piping commands with appropriate core selection; appication with dual single- and multi-core

options
FASTQC Purging module environment; truncating filenames; outputredirection
Trimmomatic Calling ajava application with options; setting run path
Trinity Job dependency; 2™ part is watcher (metascheduler) script with highly parallelized child jobs
RaxML Running an MPI application; complex program with hybrid OpenMP/MPI modes

1t partis imple (built-in) single-core, low-memory job array functionality ; 2™ part is single-

OMA core, high-memory job-dependency submission

e Willbe availableonlineatour Github site

See our Github repository: https://github.com/fasrc/slurm _utils

Slide 47 FAS Research Computing 4

Multicore BLAST

Create SLURM script for multicore job

-- file: blast multicore.slurm ---
#!/bin/bash

#SBATCH --open-mode=append i
#SBATCH -p serial requeue #
#SBATCH -J blastn #
#SBATCH -n 4 #
#SBATCH -N 1 #
#SBATCH -t 0-12:00 #
#SBATCH —-mem 12000 #
#SBATCH -o blastn &j.out id
#SBATCH -e blastn_ &j.err id
#SBATCH --mail-type=END,FAIL #

-3 HARVARD
LY Faculty of Arts and Sciences

RESTARCH COMPJTNG

(nano blast multicore.slurm)

ensure output files are not overwritten
Partition to submit to (comma separated)
Job name

Number of cores

All cores on one machine

Runtime in D-HH:MM (or use minutes)
Memory in MB

STDEOUT

STDERR

Type of email notification: BEGIN, END, FAIL,ALL

source new-modules.sh; module load ncbi-blast/2.2.31+-fasrc0l
export BLASTDB=/n/regal/informatics public/ref/

blastn -query segs.fasta \
—-db $BLASTDB/ncbi/nt/nt \
-num_threads $SLURM NTASKS \
-out segs.nt.blastn

and now submit job

sbatch blast multicore.slurm

Slide 48

FAS Research Computing \

Bowtie + Samtools

Map a FASTQ file against your genome

-- fi

le: map n sort.slurm ---
#!/bin/bash

#SBATCH -p serial requeue
#SBATCH -n 8

#SBATCH -N 1

#SBATCH -t 0-6:00

#SBATCH —-mem 8000

#SBATCH -J mapNsort
#SBATCH -o mapNsort %j.out
#SBATCH —e mapNsort %j.err
#SBATCH --mail-type=ALL

$= oS S S S e S S o

module load bowtie2/2.2.4-fasrc0Ol

-84 HARVARD
¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

and then sort it appropriately

Partition to submit to

Number of cores

Ensure that all cores are on one machine
Runtime in days-hours:minutes

Memory in MB

job name

File to which standard out will be written
File to which standard err will be written
Type of email notification- BEGIN,END, FAIL, ALL

samtools/1l.2-fasrc01

bowtie2 -x genome —p $SLURM NTASKS -1 seq.Rl.fastqg -2 seq.R2.fastqg \

| samtools view -b output.bam
samtools sort -@ $SLURM NTASKS -O

and now submit job

sbatch map n sort.slurm

Slide 49

bam -o output.sorted.bam

FAS Research Computing \

FASTQC

RESTARCH COMPUTNG

Generic batch file that will allow you to process lots of FASTQ files

-— file: fastgc.slurm ---
#!/bin/bash
#SBATCH -p serial requeue
#SBATCH -n 8
#SBATCH -N 1
#SBATCH -t 0-3:00
#SBATCH —-mem 2000
#SBATCH -J FastQC
#SBATCH -0 FastQC.%j.out
#SBATCH -e FastQC.%j.err
#SBATCH --mail-type=ALL

Partition to submit to

Number of cores

Ensure that all cores are on one machine
Runtime in days-hours:minutes

Memory in MB

job name

File to which standard out will be written
File to which standard err will be written
Type of email notification- BEGIN,END, FAIL, ALL

$= oS S S S e S S o

module purge ## Why? Clear out .bashrc /.bash profile settings that might interfere
module load fastqc/0.11.5-fasrc01

grab filename base and create output directory
j="basename $1°
mkdir -p fastqgc $7

fastgc --outdir fastgc $j —threads $SLURM NTASKS S1 2>&l > $j.fastqgc.sbatch.out

and now submit job (can also loop to submit files - remember to sleep 1 between submits)

sbatch fastgc.slurm my input file.fastqg

Slide 50 FAS Research Computing 4

. . -3 HARVARD
T rl m m O m atl C Faculty of Arts and Sciences

RESTARCH COMPUTNG

Generic batch file that will allow you to process lots of FASTQ files

-—- file: trimmomatic.slurm ---
#!/bin/bash
#SBATCH -p serial requeue
#SBATCH -n 4
#SBATCH -N 1
#SBATCH -t 0-6:00
#SBATCH —-mem 2000
#SBATCH -o PSG1l77 trim.out
#SBATCH -e PSG1l77 trim.err
#SBATCH --mail-type=ALL

Partition to submit to

Number of cores

Ensure that all cores are on one machine
Runtime in days-hours:minutes

Memory in MB

File to which standard out will be written
File to which standard err will be written
Type of email notification- BEGIN,END,FAIL, ALL

S oS o S S S o o

module load java/1.8.0 45-fasrcOl
export TRIMMOMATIC=$HOME/apps/trimmomatic
mkdir trimmed

java -jar $TRIMMOMATIC/trimmomatic-0.32.jar PE \
-threads $SLURM NTASKS \
PSG177 TGACCA.R1l.fastg.gz PSGl77 TGACCA.R2.fastqg.gz \
trimmed/PSG177 TGACCA.Rl.pair.fastqg trimmed/PSG177 TGACCA.Rl.single.fastg \
trimmed/PSG177 TGACCA.R2.pair.fastq trimmed/PSG177 TGACCA.R2.single.fastqg \
ILLUMINACLIP:illuminaClipping main.fa:2:40:15 \
LEADING:3 TRAILING:3 \
SLIDINGWINDOW:4 :20 MINLEN:25

and now submit job

sbatch trimmomatic.slurm

Slide 51 FAS Research Computing

Cid HARVARD

Trinity (Gridrunner) BY Foculy o Arts and Sciences

RESTARCH COMPUTNG

Trinity: Inchworm + Chrysalis

create file trinity ic.slurm in your favorite text editor
you may need to run this on the bigmem partition

{ #!/bin/bash

Partition to submit to

Number of cores

Ensure that all cores are on one machine
Runtime in days-hours:minutes

Memory in MB

job name

File to which standard out will be written
File to which standard err will be written
Type of email notification- BEGIN,END,FAIL,ALL
Email to which notifications will be sent

#SBATCH -p general

#SBATCH —n 16

#SBATCH -N 1

#SBATCH —t 3-0:00

#SBATCH --mem 155000

#SBATCH —J trinity ic

#SBATCH -o Al_trinity ic.out

#SBATCH —e Al_trinity ic.err

#SBATCH --mail-type=ALL

#SBATCH --mail-user=name@harvard.edu

HHHBHHBHBHRHRHR

source new-modules.sh; module load trinityrnaseq

cat R1 singles onto L pair; and R2 singles onto R pair

gunzip trimmed/Al Rl.single.fastq.gz; gunzip trimmed/Al R2.single.fastq.gz;

cat trinity/Rl_normalized.fq trimmed/Al Rl.single.fastg> trinity/Al Rl.p+s.clean.norm.fastq
cat trinity/R2_normalized.fq trimmed/Al R2.single.fastq> trinity/Al R2.p+s.clean.norm.fastq

Used Physical memory Gbyte

Trinity --seqType fq \
--JM 150G \
--left trinity/Al Rl.p+s.clean.norm.fastq --right trinity/Al R2.p+s.clean.norm.fastqg \
--Ss_1lib_type FR \
--output trinity output \ [—
--CPU 16 \
--min_kmer cov 2 \
--max_reads per loop 5000000 \
--group_pairs_distance 800 \
--no_butterfly

N7

sbatch trininty_ ic.slurm

Submitted batch job 22855027

Slide 52 FAS Research Computing

Cid HARVARD

Trinity (Gridrunner B Faculy of Arts and Scences

RESTARCH COMPUTNG

Trinity: Butterfly

create file trinity SLURM conf.txt in your favorite text editor

B e e e e e e e e e e e e e e e e e e e
grid type:

grid=SLURM

template for a grid submission

cmd=sbatch -p serial requeue --mem=10000 --time=02:00:00

number of grid submissions to be maintained at steady state by the Trinity submission system
max_nodes=1000

number of commands that are batched into a single grid submission job.

cmds_per_node=60

B e e

create file trinity b.slurm in your favorite text editor

#!/bin/bash

Partition to submit to

Number of cores

Ensure that all cores are on one machine
Runtime in days-hours:minutes

Memory in MB

job name

File to which standard out will be written
File to which standard err will be written
Type of email notification- BEGIN,END,FAIL,ALL
Email to which notifications will be sent

#SBATCH -p general

#SBATCH —n 1

#SBATCH -N 1

#SBATCH —t 1-0:00

#SBATCH --mem 4000

#SBATCH —J trinity b

#SBATCH -o Al_trinity b.out

#SBATCH —e Al_trinity b.err

#SBATCH --mail-type=ALL

#SBATCH --mail-user=name@harvard.edu

HW W HFHRHH

source new-modules.sh; module load trinityrnaseq
Trinity --seqType fq \
--left trinity/Al_Rl.p+s.clean.norm.fastq --right trinity/Al R2.p+s.clean.norm.fastq \
--SS_1ib_type FR \
--output trinity output \
--grid_conf trinity SLURM_conf.txt

sbatch --dependency=afterok: 22855027 trininty b.slurm

Slide 53 FAS Research Computing

RaxML (Hybrid OpenMP/MPI) P

RESTARCH COMPUTNG

RaxML is a complex program that will scale depending on input # taxa & patterns
Usage depends on how this has been compiled. Need to look in bin/ directory of software
SORRY, NO EASY SOLUTIONS, but many good clues!!
PLEASE READ http://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2010-3.pdf AND
http://sco.h-its.org/exelixis/resource/doc/Phylol00225.pdf
Can run on one node or across multiple nodes; depends on how you want to scale
See good docs at http://wiki.hpc.ufl.edu/doc/RAxXML
To get help: mpirun -np 1 raxml -h

R e

-—- file: raxml-hybrid.slurm ---
#!/bin/bash
#SBATCH -p general
#SBATCH -n 16
#SBATCH -N 1
#SBATCH -t 0-6:00
#SBATCH --mem-per-cpu 4000
#SBATCH -J raxml test
#SBATCH -o raxml test %j.out
#SBATCH —e raxml test %j.err
#SBATCH --mail-type=END,FAIL

Partition to submit to

Number of cores

1 if under 32 cores; >= 2 machines otherwise
Runtime in days-hours:minutes

Memory in MB; see raxML docs (good info there!)
job name

File to which standard out will be written
File to which standard err will be written
Type of email notification- BEGIN,END,FAIL, ALL

S oS S SR S S S S S

module load gcc/4.8.2-fasrc0l openmpi/1.10.0-fasrc0l raxml/8.1.5-fasrc02
ls —al SRAXML HOME/bin

do not use -T option unless for raxml-PTHREADS or raxml-HYBRID
mpirun -np $SLURM NTASKS raxmlHPC-MPI-SSE3 [options]

and now submit job

sbatch raxml-hybrid.slurm

Slide 54 FAS Research Computing 4

MA a8 HARVARD
¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

Generic 1°* OMA file to run as Jjob array

-—- file: omal.slurm —---
#!/bin/bash
#SBATCH -p serial requeue
#SBATCH -n 1
#SBATCH -t 0-6:00
#SBATCH —--mem 2000

Partition to submit to

Number of cores

Runtime in days-hours:minutes
Memory in MB

#SBATCH -o Omal_%A_%a.out STDOUT
#SBATCH -e omal %A %a.out STDERR

S oS e e S o e

#SBATCH --mail-type=FAIL

module load OMA/1.0.3-fasrcOl
OMA -s # works on data in current directory

Type of email notification- BEGIN,END,FAIL, ALL

sbatch —-array=1-100 omal. slurm # submit 1°% all x all as Jjob array
Submitted jobid 59634571

-- file: oma2.slurm ---
#!/bin/bash
#SBATCH -p general
#SBATCH -n 1
#SBATCH -t 0-6:00
#SBATCH —--mem 20000

Partition to submit to

Number of cores

Runtime in days-hours:minutes
Memory in MB

#SBATCH -o oma2 %j.out STDOUT
#SBATCH -e oma2 %j.out STDERR

S oS S e e e e

#SBATCH --mail-type=FAIL

module load OMA/1.0.3-fasrcOl
OMA # works on data in current directory

Type of email notification- BEGIN,END,FAIL, ALL

sbatch --dependency=afterok:59634751 oma2.slurm # process AllxAll data; job dependency

Slide 55 FAS Research Computing

. a8 HARVARD
Ove rVIeW Faculty of Arts and Sciences

RESEARCH COMPUTNG

1. Clusterbasics
* Access, storage, software, partitions, resources

2. Usingsoftware
* Module system, Java & Python, Updating local modules/packages

Running multicore (multiCPU) jobs & Scaling considerations
Pleasantly parallelizing tasks (e.g. getting BLAST results fast!)
Checkpointingto save (re)compute time

SLURM scripts for common programs & typical workflows

N o U kW

Troubleshooting & Getting help

Slide 56 FAS Research Computing

Basic Troubleshooting e

RESEARCH COMPUTNG

Before seeking help, take some basic steps to ascertain what is going on with your job:

* Use squeue andsacct with -—-format= option to query details from SLURM
* Are you having Fairshare issues (Priority)?
* Isyour job waiting for space (Resources)?
* Willyour job ever run (Dependency)?
* |sthere an error code or message

 Check your log files
* You did specify both -0 and -e, yes?
* No log files? Does the path to your log files exist before the job start?
e Message about Pre-emption, Timeout, or Failure?
 Thelasterrorin the log is usually not the problem. The first one is!

* Did you request e-mail messages for your jobs with --mail-type="?
e Isyour SLURM script formatted properly?
* Are you loading legacy modules? Possible software/library conflicts?

Check out Tips@12 presentation http://fasrc.us/fasrcmaterials

Slide 57 FAS Research Computing

Problems, Pitfalls, and Prevention & Hahvinsone

RESTARCH COMPUTNG

This is a shared resource, so everyone has skin in the game. And you can help us and
yourself...

Slide 58

Node and cluster problems are not unusual, esp. as large as system as Odyssey: /0
errors, node failures, memory errors, etc. Let us know if you see these.

Review our Usage & Responsibilities guidelines: http://fasrc.us/hpccustoms

Review our Common Pitfalls, lest you fall victim: http://fasrc.us/hpcpitfalls

Don’t use multiple cores for Rand Python scripts
These interpreters/runtime environments are can one use 1 core. Don’t waste please.

PEND for >48 hrs
Asking for very large resource requests (cores/memory);very low Fairshare score

Quick run and FAIL...Not including -t parameter
no -t means shortest possible in all partitions == 10 min

Asking for multiple cores but forgetting to specify one node
-n 4 -N 1 is very different from-n 4

Not specifying enough cores
progl | prog2 | prog3 > outfile should run with 3 cores

Causing massive disk 1/0 on home folders/lab disk shares
your work & others on the same filesystem slows to a crawl; simple commands like Is take forever

-

FAS Research Computing 4

Job efficiency D

RESTARCH COMPJTNG

Grid CPU Allocation wvs Utilization last week

—

cores
N
o

N
'
b S S i i i

RC regularly reviews jobs based on their effective usage of their SLURM reservations
(cores, memory, time, disk, ...)to promote maximum utilization of these resources.
* Over-requesting resources negatively effects the scheduling priority of your own jobs and

blocks other users from these resources, which further lowers the overall research output for
all HU users.

* Under-requesting resources negatively effects your job and those running on the same nodes;
and potentially other jobs on the same filesystem

You may be contacted if you are regularly are having issues with your job efficiency and
we will work with you to improve your performance.

Can calculate the efficiencies with the following formula:
sacct -u RCUSERNAME --format=user,state,jobid,alloccpus,elapsed,cputime
EffCPUs CPUTime / Elapsed
SEff CPUTime / (AllocCPUs * Elapsed)

Slide 59 FAS Research Computing

. -3 HARVARD
G ettl n g H e I p Faculty of Arts and Sciences

RC Website & Documentation --only authoritative source
https://rc.fas.harvard.edu/

Submit a ticket on the portal https://portal.rc.fas.harvard.edu/

Best way to help us to help you? Give us...

Description of problem
Additional info (login/batch? partition? JobIDs?)

Steps to Reproduce (1., 2., 3...)
Actual results
Expected results

OdyBot, for quick-fix problems http://odybot.org/

Slide 60 FAS Research Computing

Research Computing D e

RESTARCH COMPITNG

Please talk to your peers, and ...
We wish you success in your research!

http://rc.fas.harvard.edu
https://portal.rc.fas.harvard.edu
@fasrc

Harvard Informatics
@harvardifx

Slide 61

