

Using Singularity Containers on the FASRC clusters

Objectives

- Difficulties on HPC systems
- Why use Singularity containers?
- Singularity containers
- How to build your own Singularity containers
- How to run Singularity containers on Cannon/FASSE
- Bind mounts

Difficulties on HPC systems

- Building software is often complicated, particularly on a shared and multi-tenant system
- Some applications might need dependencies that are not readily available and complex to build from source
- Reproducibility:
 - Different researchers may install different versions of an application and/or dependencies
- Portability
 - Hard to share workflows and pipelines, especially with external collaborators who use another HPC system

Why use Singularity containers?

Overcome software stack, reproducibility and portability difficulties

- Create a virtual environment that contains all the software stack needed
- They package in one single file all necessary dependencies
- Choose a (linux) operating system that is different than host (i.e. HPC cluster)
- Easy to publish
- Portable

Virtual machine vs. container

Virtual Machines	Containers
Very flexible for example, run Windows on MacOS	Less flexible Only Linux systems
Heavyweight need to install all files of virtual environment	Very lightweight uses the kernel of host OS

Adapted from LSU Singularity training slides: http://www.hpc.lsu.edu/training/weekly-materials/2022-Fall/HPC_Singularity_Fall2022.pdf

SingularityCE

- Open-source container software
- Specifically designed for HPC systems (i.e. multi-tenant systems)
 - No root (admin) privileges
- Package applications with their dependencies and workflow into on single file
- Other container software

Singularity, SingularityCE, Apptainer

- Singularity: deprecated
- SingularityCE and Apptainer: branches/children of Singularity
- SingularityCE: maintained by Sylabs
- Apptainer: maintained by the Linux Foundation

Docker vs. SingularityCE

- Assumes user has root (admin) privileges on the host system
- Not designed for HPC systems

- Assumes user does not have root (admin) privileges on the host system
- Designed for HPC systems

Singularity vocabulary

- SingularityCE or Apptainer the software
 - As in "SingularityCE 3.11" or "Apptainer 1.0"
- Image
 - a compressed, usually read-only file that contains an OS and specific software stack
 - Examples: "Build a Matlab 2021a image", "Build an Alphafold image"
- Container
 - The technology: "containers vs. virtual machines"
 - An instance of an image
 - Example: "process my data in a Singularity container of Matlab"
- Host computer/supercomputer where the image is run

Singularity workflow

- 1. Build Singularity image (only once) with one of the following methods
 - Pull (i.e. download) existing container from <u>SingularityCE Container Library</u>
 - Pull existing Docker container from <u>DockerHub</u> (downloads as Singularity container)
 - Build a SingularityCE container from a Singularity definition file directly on Cannon/FASSE unprivileged build with proot
 - Build a SingularityCE container from a local Singularity definition file using option --remote.
 This will build an image on Sylabs cloud which is automatically downloaded to Cannon/FASSE
- 2. Use image (many times)

How to build SingularityCE images

- Singularity is only available on compute nodes!!!
 - Cannon: request interactive job using the salloc command
 - FASSE: does not allow salloc request a Remote Desktop job on FASSE Open OnDemand and launch a terminal
 - For details, see <u>SingularityCE on the clusters</u>
- Follow docs: <u>https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/READM</u> <u>E.md#build-your-own-singularityce-container</u>

Singularity definition file

Bootstrap: docker	
From: ubuntu:22.04	Header: base container image
%labels	
Author: J. Harvard	Label: container metadata
%post	
apt-get -y update	
apt-get -y install cowsay lolcat	Post: section where you add your own packages
%environment	
export LC_ALL=C	
export PATH=/usr/games:\$PATH	Environement: set environmental variables
%runscript	Runscript: commands run when you use
date cowsay lolcat	"singularity run"

Unprivileged builds with proot

Unprivileged builds that use proot have limitations, because proot's emulation of the root user is not complete. In particular, such builds:

- Header
 - **Do not support** arch / debootstrap / yum / zypper bootstraps
 - Use localimage, library, oras, or one of the docker/oci sources.
- Do not support %pre and %setup sections of definition files.
- Run the <code>%post sections of a build in the container as an emulated root user.</code>
- Are subject to any restrictions imposed in singularity.conf.
- Incur a performance penalty due to the ``ptrace``-based interception of syscalls used by proot.
- May fail if the <code>%post script requires privileged operations that proot cannot emulate.</code>

How to run Singularity images

 Follow docs: <u>https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/working_with_images.md</u>

Bound from host OS to container

Singularity and host file system

To allow other filesystems to be accessible from container, you can use --bind option

• See <u>Accessing files from a container</u>

Parallel computing and Singularity

- <u>OpenMP</u>
- <u>MPI</u>

Resources and help

- Documentation
 - <u>https://docs.rc.fas.harvard.edu/</u>
 - Singularity docs: https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers
- Portal
 - http://portal.rc.fas.harvard.edu/rcrt/submit_ticket
- Email
 - rchelp@rc.fas.harvard.edu
- Office Hours
 - Wednesday noon-3pm https://harvard.zoom.us/j/255102481
- Consulting Calendar
 - <u>https://www.rc.fas.harvard.edu/consulting-calendar/</u>
- Training
 - <u>https://www.rc.fas.harvard.edu/upcoming-training/</u>

Thank you!