
Using Singularity Containers on the FASRC clusters

Objectives
• Difficulties on HPC systems
• Why use Singularity containers?
• Singularity containers
• How to build your own Singularity containers
• How to run Singularity containers on Cannon/FASSE
• Bind mounts

Difficulties on HPC systems
• Building software is often complicated, particularly on a shared and multi-tenant

system
• Some applications might need dependencies that are not readily available and

complex to build from source
• Reproducibility:

• Different researchers may install different versions of an application and/or dependencies

• Portability
• Hard to share workflows and pipelines, especially with external collaborators who use another

HPC system

Why use Singularity containers?
 Overcome software stack, reproducibility and portability difficulties

• Create a virtual environment that contains all the software stack needed
• They package in one single file all necessary dependencies
• Choose a (linux) operating system that is different than host (i.e. HPC cluster)
• Easy to publish
• Portable

Virtual machine vs. container

Virtual Machines Containers

Very flexible -- for example, run Windows on
MacOS

Less flexible
Only Linux systems

Heavyweight -- need to install all files of virtual
environment

Very lightweight -- uses the kernel of host OS

Adapted from LSU Singularity training slides:
http://www.hpc.lsu.edu/training/weekly-materials/2022-Fall/HPC_Singularity_Fall2022.pdf

SingularityCE
• Open-source container software
• Specifically designed for HPC systems (i.e.

multi-tenant systems)
• No root (admin) privileges

• Package applications with their dependencies
and workflow into on single file

• Other container software

Apptainer

Singularity, SingularityCE, Apptainer
• Singularity: deprecated

• SingularityCE and Apptainer:
branches/children of Singularity

• SingularityCE: maintained by Sylabs

• Apptainer: maintained by the Linux
Foundation

Docker vs. SingularityCE

• Assumes user has root (admin)
privileges on the host system

• Not designed for HPC systems

• Assumes user does not have
root (admin) privileges on the host
system

• Designed for HPC systems

Singularity vocabulary
• SingularityCE or Apptainer – the software

• As in “SingularityCE 3.11” or “Apptainer 1.0”

• Image

• a compressed, usually read-only file that contains an OS and specific software stack

• Examples: “Build a Matlab 2021a image”, “Build an Alphafold image”

• Container

• The technology: “containers vs. virtual machines”

• An instance of an image

• Example: “process my data in a Singularity container of Matlab”

• Host – computer/supercomputer where the image is run

Singularity workflow
1. Build Singularity image (only once) with one of the following methods

• Pull (i.e. download) existing container from SingularityCE Container Library

• Pull existing Docker container from DockerHub (downloads as Singularity container)

• Build a SingularityCE container from a Singularity definition file directly on Cannon/FASSE –

unprivileged build with proot

• Build a SingularityCE container from a local Singularity definition file using option --remote.

This will build an image on Sylabs cloud which is automatically downloaded to Cannon/FASSE

2. Use image (many times)

https://cloud.sylabs.io/library
https://hub.docker.com/search?q=

How to build SingularityCE images
• Singularity is only available on compute nodes!!!

• Cannon: request interactive job using the salloc command
• FASSE: does not allow salloc – request a Remote Desktop job on FASSE Open OnDemand

and launch a terminal
• For details, see SingularityCE on the clusters

• Follow docs:
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/READM
E.md#build-your-own-singularityce-container

http://fasseood.rc.fas.harvard.edu/
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/README.md#singularityce-on-the-clusters
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/README.md#build-your-own-singularityce-container
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/README.md#build-your-own-singularityce-container

Singularity definition file
Bootstrap: docker

From: ubuntu:22.04

%labels

 Author: J. Harvard

%post

 apt-get -y update

 apt-get -y install cowsay lolcat

%environment

 export LC_ALL=C

 export PATH=/usr/games:$PATH

%runscript

 date | cowsay | lolcat

Header: base container image

Label: container metadata

Post: section where you add your own packages

Environement: set environmental variables

Runscript: commands run when you use
“singularity run”

Unprivileged builds with proot
Unprivileged builds that use proot have limitations, because proot’s emulation of the root user is not
complete. In particular, such builds:
• Header

• Do not support arch / debootstrap / yum / zypper bootstraps
• Use localimage, library, oras, or one of the docker/oci sources.

• Do not support %pre and %setup sections of definition files.
• Run the %post sections of a build in the container as an emulated root user.
• Are subject to any restrictions imposed in singularity.conf.
• Incur a performance penalty due to the``ptrace``-based interception of syscalls used by proot.
• May fail if the %post script requires privileged operations that proot cannot emulate.

From https://docs.sylabs.io/guides/latest/user-guide/build_a_container.html#unprivilged-proot-builds

https://docs.sylabs.io/guides/latest/user-guide/build_a_container.html#unprivilged-proot-builds

How to run Singularity images
• Follow docs:

https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/working_
with_images.md

https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/working_with_images.md
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/working_with_images.md

Singularity and host file system

What users see within
containers

Part of Singularity
image

Part of host OS

Bound from host OS to container
by default

To allow other filesystems to be accessible from container, you can use --bind option
• See Accessing files from a container

https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/working_with_images.md#accessing-files-from-a-container

Parallel computing and Singularity
• OpenMP
• MPI

https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers/OMP_Apps
https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers/MPI_Apps

Resources and help
• Documentation

• https://docs.rc.fas.harvard.edu/
• Singularity docs: https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers

• Portal
• http://portal.rc.fas.harvard.edu/rcrt/submit_ticket

• Email
• rchelp@rc.fas.harvard.edu

• Office Hours
• Wednesday noon-3pm https://harvard.zoom.us/j/255102481

• Consulting Calendar
• https://www.rc.fas.harvard.edu/consulting-calendar/

• Training
• https://www.rc.fas.harvard.edu/upcoming-training/

https://docs.rc.fas.harvard.edu/
https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers
http://portal.rc.fas.harvard.edu/rcrt/submit_ticket
https://www.rc.fas.harvard.edu/consulting-calendar/
https://www.rc.fas.harvard.edu/upcoming-training/

Thank you!

