
Python Multiprocessing on the FASRC
Clusters

Learning Objectives

• Serial Processing
• Why use Multiprocessing in Python?
• Optimizing cluster usage variables for multiprocessing
• Basic process-based parallelism
• Controlling utilization with pooling
• Accelerating your code with numpy
• Other helpful tools & training

2

Serial Processing - What is it & When to use?
● Default mode of Python
● Tasks executed one after the other, in a strict sequence
● Easy to implement & understand

● Lots of very short operations &/or trivial computations
● Anything where setup and teardown of processes would slow down

execution
● Ex: Working with I/O on small files where the overhead of spawning

threads or processes is higher
● Code has dependencies between tasks

● But inefficient for computationally intensive tasks; dealing with large
datasets

Accelerating Your Python - Parallel Processing

■ Multiple tasks executed simultaneously, utilizing multiple cores
■ Achieve faster execution times by dividing workload
■ Require synchronization & communication between processes or

precaution between threads using global interpreter lock (GIL)
■ Process-based

• Separate processes, each with their own memory & Python interpreter => avoids GIL
• Harder to share objects between processes

■ Thread-based
• Threads share same memory space
• Could write to the same memory at the same time => needs GIL

■ https://medium.com/@bfortuner/python-multithreading-vs-multiprocessing-73072ce5600b
■ https://www.python-engineer.com/courses/advancedpython/15-thread-vs-process/

4

MultiProcessing

■ Multiprocessing - Process-based parallelism
• Ability of a system to run multiple processors at one time

■ Allows several processes to run in parallel
■ Multiprocessing module allocates tasks to different processors and makes

better use of a multi-core machine
■ No shared memory means better isolation between tasks, reducing the risk

of data corruption
■ Amplifies program efficiency & resource utilization
■ multiprocessing — Process-based parallelism — Python 3.12.4 documentation
■ https://medium.com/@surve.aasim/python-process-based-parallelization-3f91645ac4cb

5

Multithreading - Thread-based Parallelism

Pros:

● Threads are lightweight execution units within a process
● Share memory making communication between threads efficient
● Good for IO bound tasks

Cons:

● Must manage to avoid race conditions, synchronization issues
● Python's Global Interpreter Lock (GIL) limits the effectiveness of

threads in CPU bound tasks by preventing the execution of python
bytecode simultaneously

Multiprocessing vs Multithreading

• Multithreading: 1 thread running at a time in a python process

• Multiprocessing: For CPU heavy tasks, n_process=n_cores,

never more

🔗 From Multithreading vs. Multiprocessing in Python (very informative)

Multiprocessing is parallelism/doing multiple

things at the same time.

Multithreading is concurrency/dealing with
multiple things at the same time.

Multiprocessing is for increasing speed Multithreading is for hiding latency

Multiprocessing is best for computations Multithreading is best for IO

Software Based Multiprocessing vs Python Coding

● Software with multiprocessing options:
○ May be limited in configuration variables and thus performance
○ Is probably just threading

● See significant performance gains writing your own Python
multiprocessing code

● Tailor parallel execution to your needs
○ Process data efficiently
○ Control process communication
○ Handle errors and logging

● Community support around Python multiprocessing in guides,
manuals, and books

● Submit your slurm job and walk away

Training Material

9

Login to Cannon
ssh <username>@login.rc.fas.harvard.edu

Check current location & change if desired for this training: pwd
cd <desired-location>

Clone FASRC User Codes repository:
https://github.com/fasrc/User_Codes/tree/master

SSH - git clone git@github.com:fasrc/User_Codes.git

HTTPS - git clone https://github.com/fasrc/User_Codes.git

Create a training folder & go to that folder:

mkdir python-training; cd python-training

Copy Python folders from the User Codes directory:
cp -r ../User_Codes/Languages/Python .

cp -r ../User_Codes/Parallel_Computing/Python/Python-Multiprocessing-Tutorial .

https://docs.rc.fas.harvard.edu/kb/training-materials/

Python Package Installation - Interactive

o Go to a compute node on the test partition:

o Create a vanilla mamba/conda environment (for multiprocessing exercise):

o Alternatively, if default $HOME is desired, then do following instead:

o See Python Package Installation
10

salloc -p test --nodes=1 --cpus-per-task=2 --mem=12GB --time=01:00:00

module load python
mamba create --prefix=/n/holylabs/LABS/<desired-folder>/multiproc_env
python=3.11 -y

module load python
conda create --name multiproc_env python=3.11 -y

Python Package Installation

o Activate conda/mamba environment:

o Or if $HOME used, then:

o Install relevant python packages (Mamba recommended):

o Always pip install inside a conda environment to avoid package conflicts

o https://docs.rc.fas.harvard.edu/kb/python-package-installation/#Pip_Installs
o Deactivate the environment:

11

mamba activate /n/holylabs/LABS/<desired-folder>/multiproc_env

mamba install numpy pandas matplotlib -y
pip install jupyterlab swifter

mamba deactivate

mamba activate multiproc_env

Python Package Installation - sbatch
https://github.com/fasrc/User_Codes/tree/master/Languages/Python/Example2

multiprocbuild_env.sh: bash script for
creating the multiproc_env mamba
environment

12

Go to Multiprocessing Tutorial

cd Python-Multiprocessing-Tutorial

Submit job

sbatch run_multiproc.sbatch

Multiprocessing - Process-based Parallelism - Basic

o Multiprocessing in Python - MachineLearningMastery.com

o Two functions declared to execute
print statements after sleeping for
2 & 3 seconds, resp.

o 3 processes created using
multiprocessing.Process inside main()

o The Process() utilizes target
argument to run target process

o Processes are run using start()

o Use join() to run & exit a processes
before the main program process

13

import multiprocessing

import time

def worker():

 name = multiprocessing.current_process().name

 print(name, 'Starting')

 time.sleep(2)

 print(name, 'Exiting')

def my_service():

 name = multiprocessing.current_process().name

 print(name, 'Starting')

 time.sleep(3)

 print(name, 'Exiting')

if __name__ == '__main__':

 service = multiprocessing.Process(name='my_service', target=my_service)

 worker_1 = multiprocessing.Process(name='worker 1', target=worker)

 worker_2 = multiprocessing.Process(target=worker)

 worker_1.start()

 worker_2.start()

 service.start()

Multiprocessing in Python

o On the cluster, difference between number of CPUs allocated to the job vs
total number of CPUs available on the node

o Go to a compute node on the test partition requesting 10 cores:

o See total number of cores available on the node:

o Execute cpu-count.py to see which command gives you the number of
cores allocated to your job:

o See How to find out the number of CPUs using python - Stack Overflow
14

salloc -p test --nodes=1 --cpus-per-task=10 --mem=12GB --time=01:00:00

scontrol show node <nodename>

cd Python-Multiprocessing-Tutorial
python cpu-count.py

Multiprocessing - Pooling

o Run 1000 processes together - may not
be possible

o Create a process pool to limit number of
processes that can be run at a time

o Function declared to return the cube

o The multiprocessing.Process doesn’t work
with p.start() & p.join(), would need an
output queue as well. But faster than Pool()

o The multiprocessing.Pool module
easier to use, returns ordered result using
pool.map(), & causes less overhead

o See Python multiprocessing: How to know to use Pool or Process? - Stack Overflow 15

import multiprocessing

import time

import os

def cube(x):

 return x**3

if __name__ == '__main__':

 # The Process class

 processes = [multiprocessing.Process(target=cube, args=(x,)) for x in

range(1,len(os.sched_getaffinity(0)))]

 [p.start() for p in processes]

 result_process = [p.join() for p in processes]

 # The Pool class

 pool =

multiprocessing.Pool(processes=len(os.sched_getaffinity(0)))

 result_pool = pool.map(cube, range(1,len(os.sched_getaffinity(0)))]

Multiprocessing + Numpy with JupyterLab notebook

o Using Multiprocessing along with Numpy to accelerate python program

o Go to OOD (Cannon or FASSE) & launch JupyterLab notebook on test with
• 52 CPUs

• gcc/12.2.0-fasrc01 loaded as a module

• multiproc_env loaded as a kernel

• In python-training/Python-Multiprocessing-Tutorial

o Problem Statement:
• A sample data file has 4 columns and 1000 entries. Columns correspond to the time

a job was submitted, when it started, when it ended, and number of CPUs allocated.

• Calculate the total number of CPUs in use by currently running jobs for every
submitted job

16

Multiprocessing + Numpy

o Convert numerical columns to Numpy arrays.

o Declare a function to calculate CPUs utilized: calculate_cpus_utilized()

o Multiple methods utilized for the calculation:
• Use the function over each submitted-job entry

• Pandas apply()

• swifter.apply()

• Using Numpy arrays & for-loop

• Using Multiprocessing with a pool of processes = #CPUs requested for OOD job

o Run the notebook to see which method gives the fastest result

o Fastest: Combination of Numpy and Multiprocessing
17

Accelerate Python - Other Tools

o Numba

• https://numba.pydata.org/

o Swifter

• Speed up your Pandas Processing with Swifter | by Cornellius
Yudha Wijaya | Towards Data Science

• GitHub - jmcarpenter2/swifter: A package which efficiently
applies any function to a pandas dataframe or series in the
fastest available manner

o Dask

• https://www.dask.org/
18

FASRC documentation

o FASRC docs: https://docs.rc.fas.harvard.edu/

o FASRC Python docs:
• https://docs.rc.fas.harvard.edu/kb/python/
• https://docs.rc.fas.harvard.edu/kb/python-package-installation/

o GitHub User_codes: https://github.com/fasrc/User_Codes/

o Getting help

• Office hours: https://www.rc.fas.harvard.edu/training/office-hours/

• Ticket

o Portal: http://portal.rc.fas.harvard.edu/rcrt/submit_ticket (requires login)

o Email: rchelp@rc.fas.harvard.edu
19

Upcoming Trainings
Training calendar: https://www.rc.fas.harvard.edu/upcoming-training/

20

FASRC: Advanced Cluster Usage Workshop – March 20, 2025 12-4PM (in-person)
Equip users with advanced SLURM skills to optimize job management and performance in an HPC environment.
Workshop includes many hands-on exercises.
Lunch and coffee/tea will be provided.

Informatics: Introduction to scRNA analysis
Gentle introduction to the motivations for scRNAseq and more
Details: https://informatics.fas.harvard.edu/events/

Kempner: Kempner Institute Spring 2024 Compute Workshop (in-person)
Introduction to High-Performance Computing (HPC) and the Kempner Institute AI cluster
Details: Kempner Institute Spring 2024 Compute Workshop

Training Session Evaluation
Please, fill out our training session evaluation. Your feedback is essential for
us to improve our trainings!!

https://tinyurl.com/FASRC-training

21

Thank you :)
FAS Research Computing

