
Python Basics on the FASRC
Clusters

Learning objectives

o Python using CLI (Command Line Interface)
• Interactive
• Sbatch

o Python Package installation

• Interactive

• Sbatch

o Python using OOD (Open On Demand)

o Jupyter Notebook
• Create conda environment (i.e., jupyter kernel)

2

Python Programming Language

o High-level, general-purpose, and object-oriented programming language with
emphasis on code readability and use of significant indentation.

o Ideal for scripting and rapid application development given its dynamic typing, elegant
syntax, and automatic memory management (garbage collection).

o Has a comprehensive standard library. Also known as “batteries-included” language.

o Python’s implementation is mostly in C.

• Python’s core interpreter, CPython, written in C.

o Interpreted language, hence slower than compiled languages, like C and Fortran.

• Compiled generates executable

• Interpreted executes instructions directly on the fly without compiling a program
into machine language

3

Python Programming Language – FASRC DOCS

Python using CLI - Interactive

4

Login to Cannon
ssh <username>@login.rc.fas.harvard.edu

Go to a compute node on the test partition:
salloc –-partition test --nodes=1 --cpus-per-task=2 --mem=12GB --time=00:30:00

Check Python modules available on Cannon:
module spider python

Get detailed information on specific module, e.g.:
module spider python/3.10.13-fasrc01

Load the latest (usually also the default) Python module:
module load python

CLI Training:

https://docs.rc.fas.harvard.edu/wp-content/uploads/2013/10/Getting-started-on-FASRC-clusters-with-CLI.pptx.pdf

Training Material

5

Check current location & change if desired for this training: pwd
cd <desired-location>

Clone FASRC User Codes repository:
https://github.com/fasrc/User_Codes/tree/master

SSH - git clone git@github.com:fasrc/User_Codes.git

HTTPS - git clone https://github.com/fasrc/User_Codes.git

Create a training folder & go to that folder:

mkdir python-training

cd python-training

Copy Python folders from the User Codes directory:

cp -r ../User_Codes/Languages/Python .

cp -r ../User_Codes/Parallel_Computing/Python/Python-Multiprocessing-Tutorial .

https://docs.rc.fas.harvard.edu/kb/training-materials/

Python using CLI - Interactive

o Check Python version:

o Invoke Python interpreter:

o Execute Python programming interactively:

o Exit Python:

o Or run a python script interactively:
6

python --version

python

def square(x):
 """square a number"""

return x ** 2

for N in range(1, 4):

 print(N, "squared is", square(N))

exit()

python myscript.py

Python using CLI - sbatch; Example 1
https://github.com/fasrc/User_Codes/tree/master/Languages/Python/Example1

run.sbatch: Batch-job submission script
for queuing the job

mc_pi.py: Source code for calculating
Pi using Monte-Carlo method

7

Go to Example1 folder

cd Python/Example1

Submit job

sbatch run.sbatch

Python Package Installation - Interactive

o Go to a compute node on the test partition:

o Create a vanilla mamba/conda environment (for multiprocessing exercise):

o Alternatively, if default $HOME is desired, then do following instead:

o See Python Package Installation
8

salloc -p test --nodes=1 --cpus-per-task=2 --mem=12GB --time=01:00:00

module load python
mamba create --prefix=/n/holylabs/LABS/<desired-folder>/multiproc_env
python=3.11 -y

module load python
conda create --name multiproc_env python=3.11 -y

Python Package Installation

o Activate conda/mamba environment:

o Or if $HOME used, then:

o Install relevant python packages (Mamba recommended):

o Always pip install inside a conda environment to avoid package conflicts

o https://docs.rc.fas.harvard.edu/kb/python-package-installation/#Pip_Installs
o Deactivate the environment:

9

mamba activate /n/holylabs/LABS/<desired-folder>/multiproc_env

mamba install numpy pandas matplotlib -y
pip install jupyterlab swifter

mamba deactivate

mamba activate multiproc_env

Python Package Installation - sbatch
https://github.com/fasrc/User_Codes/tree/master/Languages/Python/Example2

numpy_pandas_ex.py: source code for
generating a dataframe utilizing a
mamba environment

10

Go to Example2 folder

cd ../Python/Example2

Submit job

sbatch run.sbatch

Python Using Open OnDemand (OOD)

o Open-source web portal to access clusters

o Web-based, no software needs be installed on your local laptop/desktop (except for a
modern browser like Google Chrome, Mozilla Firefox)

o Easy to learn and simple to use

o Very similar to desktop applications

o The easiest way to run GUI applications remotely on a cluster

o Safari is not recommended for OOD

o OOD Training:
https://docs.rc.fas.harvard.edu/wp-content/uploads/2013/10/Getting-started-on-FASRC-clusters-with-OOD-May20

24.pdf
11

How to access OOD on FASRC Clusters

o Accessing OOD from Cannon
• Connect to FASRC VPN - Virtual Desktop (VDI) through Open OnDemand – FASRC

DOCS
• Then go to https://rcood.rc.fas.harvard.edu

o Accessing OOD from FASSE
• Connect to FASSE VPN - FASSE VDI Apps – FASRC DOCS
• Then go to https://fasseood.rc.fas.harvard.edu

12

FASSE proxy

Documentation: FASSE Proxy Settings – FASRC DOCS

o You may need to set FASSE proxy on

• Firefox (web browsing)

• Jupyter Notebook

• Access Github

• (Basically, anything outside of FASSE)

13

Filling a form to launch an app

o Request the resources that you need
(If you don’t know for a first trial run, use similar resources as your laptop/desktop)

• Partition (Name): depends on Cannon (URL) vs FASSE (URL)

• Memory (RAM): amount of memory in GB

• Number of cores: recommended at least 2

• Number of GPUs: if >= 1, make sure you select a gpu partition

• Allocated time: time you would like your session to run

• Email for status notification: to know when job starts, ends

• Reservation: if you have a special reservation (this requires approval from FASRC)

• Account: use this if you have more than one PI_lab affiliation
14

the minimum and/or maximum
values of each field depends on

the selected partition

Jupyter Notebook

o Launch new Jupyter Notebook session (existing session will not work!)
o Select newly created conda environment as the kernel

a. Open a notebook

b. On the top menu, click Kernel -> Select Kernel -> Click on OOD_env

c. Note: kernels is the same as conda, python, mamba environment

15

Closing running OOD windows/tabs

o In most OOD apps, you can close the browser tab while the code is running,
and the code will continue to run on the background

o Jupyter Notebook will not! The cell that is running will lose the data and
output files will not be written

• Solution: run Remote Desktop app and launch Jupyter Notebook from within
Remote Desktop

• Documentation: Open OnDemand (OOD/VDI) Remote Desktop: How to open
software – FASRC DOCS

16

FASRC documentation

o FASRC docs: https://docs.rc.fas.harvard.edu/

o FASRC Python docs:
• https://docs.rc.fas.harvard.edu/kb/python/
• https://docs.rc.fas.harvard.edu/kb/python-package-installation/

o GitHub User_codes: https://github.com/fasrc/User_Codes/

o Getting help

• Office hours: https://www.rc.fas.harvard.edu/training/office-hours/

• Ticket

o Portal: http://portal.rc.fas.harvard.edu/rcrt/submit_ticket (requires login)

o Email: rchelp@rc.fas.harvard.edu
17

FASRC Upcoming Trainings
Training calendar: https://www.rc.fas.harvard.edu/upcoming-training/

18

Python Multiprocessing on the FASRC cluster

Training is focused on some of the techniques to accelerate Python programming with
emphasis on utilizing multiprocessing with numpy arrays.

Audience: Users who are familiar with basic Python, command line, HPC systems, and
have attended our Python Basics on FASRC clusters training.

Note: All topics below are a brief overview to utilizing multiprocessing on FASRC clusters.

Objectives:
1. Understanding Multiprocessing
2. Executing Multiprocessing on FASRC clusters

Training session evaluation

Please, fill out our training session evaluation. Your feedback is essential for
us to improve our trainings!!

https://tinyurl.com/FASRC-training

19

Thank you :)
FAS Research Computing

