%
» v . '
\ :

Parallel Job Workflows using OpenMP and MPI

Plamen Krastev, PhD
Harvard - FAS Research Computing

2zt HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Objectives

"= To advise you on the best practices for running parallel workflows on the
FASRC cluster

= To provide the basic knowledge required for (implementing and) running
your parallel OpenMP and MPI applications efficiently on the FASRC cluster

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Overview

Best Practices

= Brief Introduction to Parallel Computing

« Embarrassingly Parallel Jobs / Workflows

= OpenMP Jobs / Workflows

= MPI Jobs / Workflows

= Hybrid (MPI+OpenMP) Jobs / Workflows
e

2zt HARVARD FAS Research Computing

Division of Science

E¥ UNIVERSITY https://rc.fas.harvard.edu

Best Practices (1)

Do small scale testing prior to large scale runs

= Ensure your jobs will run at least 10 minutes

= Make sure your jobs are well constrained

» Make sure your data is on a filesystem that can handle the /0O load

= Be aware of potential bottlenecks in your workflow

= Be cognizant of your fairshare https://docs.rc.fas.harvard.edu/kb/fairshare/
e

https://docs.rc.fas.harvard.edu/kb/fairshare/

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Best Practices (2)

Ensure your code is operating as expected

= Understand the scaling of your code

= Have your primary code ina git repo

= Keep backups of critical data

= Have checkpoints

= Optimize your code and workflow
e

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Overview

= Brief Introduction to Parallel Computing

« Embarrassingly Parallel Jobs / Workflows

= OpenMP Jobs / Workflows

= MPI Jobs / Workflows

= Hybrid (MPI+OpenMP) Jobs / Workflows
e

2z HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Summit; ORNL Sierra; LLNL Cannon: Harvard

Using the world’s fastest and largest computers to solve large and complex
problems.

mm HARVARD

FAS Research Computing
Division of Science

B8 UNIVERSITY

Serial Computation

Traditionally software has been written for
serial computations:

= To berunon asingle computer having a
single Central Processing Unit (CPU)

= A problemis broken into a discrete set
of instructions

" |nstructions are executed one after
another

= Only one instruction can be executed at
any moment in time

https://rc.fas.harvard.edu

problem

instructions

mm HARVARD

B8 UNIVERSITY

FAS Research Computing
Division of Science

Parallel Computation

In the simplest sense, parallel computing is the
simultaneous use of multiple compute resources to
solve a computational problem:

= To be run using multiple CPUs

= A problem is broken into discrete parts that can
be solved concurrently

= Each partis further broken down to a series of
instructions

= Instructions from each part execute
simultaneously on different CPUs

problem

https://rc.fas.harvard.edu

instructions

-l -
-l -
-l -E=S
-~ -

sz HARVARD FAS Research Computing

Division of Science
E8 UNIVERSITY

https://rc.fas.harvard.edu
Why use HPC ?

Major Reasons:

Save time and/or money: In theory, throwing more resources at a task will shorten its time to
completion, with potential cost savings. Parallel clusters can be built from cheap, commodity
components.

Solve larger / more complex problems: Many problems are so large and/or complex that it is
impractical or impossible to solve them on a single computer, especially given limited computer
memory.

Provide concurrency: A single compute resource can only do one thing at a time. Multiple computing
resources can be doing many things simultaneously.

Use of non-local resources: Using compute resources on a wide area network, or even the Internet

SETI@home when local Compute resources are scarce.
g The Seameh for Extralemestrial Intelligence

2z HARVARD _ FAS Research Computing

Division of Science

E¥ UNIVERSITY - https://rc.fas.harvard.edu

Applications of HPC (not a complete list)

= Atmosphere, Earth, Environment, Space Weather

= Physics / Astrophysics — applied, nuclear, particle,
condensed matter, high pressure, fusion, photonics

= Bioscience, Biotechnology, Genetics

= Chemistry, Molecular Sciences

= Geology, Seismology

= Mechanical and Aerospace Engineering

= Electrical Engineering, Circuit Design,
Microelectronics

= Computer Science, Mathematics

Image credit: LLNL

sate HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

Overview

« Embarrassingly Parallel Jobs / Workflows

« OpenMP Jobs / Workflows

- MPI Jobs / Workflows

« Hybrid (MPI+OpenMP) Jobs / Workflows
e

FAS Research Computing
Division of Science
https://rc.fas.harvard.edu

mm HARVARD

B8 UNIVERSITY

Embarrassingly Parallel

Sequential

Input
Parameter
Set

Process 1
Input
Parameter

Set

Serial
Code

Parallel

Process 2
Input
Parameter

Set

Serial
Code

Process N
Input
Parameter

Set

Serial
Code

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Embarrassingly Parallel

= Running many serial jobs in parallel
o Parameter Sweeps
https://www.rc.fas.harvard.edu/wp-content/uploads/2015/04/Parameter-Sweep.pdf
o Data Transfers
o Data Analysis Pipelines

« When possible, use serial requeue partition

= Potential Problems/Bottlenecks
o Filesystem I/O
o Re-queue
o SLURM Thrashing
Short runs

Lots of scheduler queries

https://www.rc.fas.harvard.edu/wp-content/uploads/2015/04/Parameter-Sweep.pdf

2zt HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Submitting Large Number of Serial Jobs

= Job Launcher Scripts
o Use scripting language (e.g., Bash, Python, Per1, R) to construct and submit jobs

= SLURM Job Arrays
o Works best for individual tasks that take 10+ minutes

= Single job: for loop in job-script
o Works best for lots really short tasks (seconds)

Genuine Warning: Resist the urge to use R / bash to create 1000s of
files and submit each as a separate job

Reference:

https://docs.rc.fas.harvard.edu/kb/submitting-large-numbers-of-jobs/

https://docs.rc.fas.harvard.edu/kb/submitting-large-numbers-of-jobs/

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Job Launcher Scripts

« Use scripting language (e.g., Bash, Python, R, Per1) to construct and submit jobs

« Advantages
o Full Flexibility and Control

- Disadvantage
o Can get rather complex depending on workflow

« Examples:
o https://github.com/fasrc/slurm migration scripts

https://github.com/fasrc/slurm_migration_scripts

sate HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

SLURM Job Arrays

Use SLURM job arrays to process data

= Advantages
o Easytouse
o Quick

o Easy on the scheduler

Disadvantages
o Problems must fit into the Job Array style

Examples:
o https://github.com/fasrc/User Codes/tree/master/Parallel Computing/EP/Examplel

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example1

o HARVARD FAS Reseorch'Compu’ring
Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

SLURM Job Arrays

= #SBATCH --array=indexes

1-10 1,2,3,4,5,6,7,8,9,10
2-20:2 2,4,6,8,10,12,14,16,18,20
1,3,5,7,11,21 1,3,5,7,11,21

2-20%2 2,4 then 6,8 then 10,12 ...

= SLURM job script variables
o %A =Jobld and %a = IndexID
Ex: SSBATCH -o stdout-%A %a.o

o $SLURM_ARRAY_TASK ID
ExX:R CMD input.R input. $SLURM_ARRAY_TASK_ID .out

2zt HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

SLURM Job Arrays Example

#!/bin/bash
#SBATCH -J array test
#SBATCH -p shared

#SBATCH -c 1
#SBATCH -t 00:10:00 This is per array task resource needs

#SBATCH --mem=4G

#SBATCH -0 %$A-%a.o

#SBATCH -e %$A-%a.e

#SBATCH --array=100,200, 300

Load software environment
module load R/4.3.1-fasrc01

input=serial sum.R

Execute code
srun -n 1 -¢ 1 R CMD BATCH S$input S$input.$SLURM ARRAY TASK ID.out

https://github.com/fasrc/User Codes/tree/master/Parallel Computing/EP/Examplel
e

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example1

sate HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

Using SLURM Array Index in R

tid <- as.integer (Sys.getenv ('SLURM ARRAY TASK ID'))
res <- serial sum(x=tid)
print (res)

2zt HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Single Job: for loop in in job-script

#!/bin/bash

#SBATCH -J test job
#SBATCH -p shared
#SBATCH -c 1

#SBATCH -t 00:10:00
#SBATCH --mem=4G
#SBATCH -o test job.out
#SBATCH -e test job.err

Load software environment
module load R/4.1.0-fasrcO1

input=serial sum.R

Execute code
for 1 in 100 200 300, do

export inp=$i

srun -n 1 -c 1 R CMD BATCH S$input $input.${inp}.out
done

https://github.com/fasrc/User Codes/tree/master/Parallel Computing/EP/Example2
e

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example2

g HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

Overview

« OpenMP Jobs / Workflows

- MPI Jobs / Workflows

« Hybrid (MPI+OpenMP) Jobs / Workflows
e

s HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

What is OpenMP ?

- OpenMP = Open Multi-Processing

- An Application Program Interface (API) that may be used to explicitly
direct multi-threaded, shared memory parallelism

- Comprised of three primary APl components:
- Compiler Directives
- Runtime Library Routines
- Environment Variables

g HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

OpenMP Programming Model

= Shared Memory

" Single Node

" One thread per core

= Explicit Parallelism

= Not designhed to handle parallel I/0

g HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

Threading Languages Interfaces

Pthreads

OpenMP
OpenCL/CUDA
OpenACC
Python

R

Perl

MATLAB (PCT)

Others
e

st HARVARD FAS Research Computing

= Division of Science
ES UNIVERSITY

https://rc.fas.harvard.edu
Compiling OpenMP Programs
 Compiler/Platform | Compiler | Flag

Intel:

module load intel/23.2.0-fasrcO1l
icx —o omp test.x omp test.c —gopenmp

GNU:
module load gcc/13.2.0-fasrc01
gcc —o omp test.x omp test.c —fopenmp

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/OpenMP

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/OpenMP

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Running OpenMP Programs (1)

Interactive / test jobs:

(1) Start aninteractive bash shell
> salloc -p test -c¢ 4 —-—-mem=4G -t 0-06:00

(2) Load required modules, e.g.,
> module load gcc/10.2.0-fasrc0l

(3) Compile (or use a Makefile)
> gcc —o omp hello.x omp hello.c —fopenmp

(4) Set number of OpenMP threads
> export OMP NUM THREADS=4

(5) Run the executable
> ./omp hello.x

[pkrastev@holy7c19314 Examplel]$./omp hello.x
Hello World from thread 1

Hello World from thread
Hello World from thread
Hello World from thread

Number of threads = 4

3
2
0

sate HARVARD FAS Research Computing

Division of Science

8 UNIVERSITY https://rc.fas.harvard.edu
Running OpenMP Programs (2)
Batch Jobs:

(1) Prepare a batch-job submission script
#!/bin/bash

#SBATCH -J omp_ job
#SBATCH -o slurm.out
#SBATCH -e slurm.err
#SBATCH -p shared
#SBATCH -t 0-00:30
#SBATCH --mem=4000
#SBATCH -c 8 Number of threads
#SBATCH -N 1 # Number of nodes

export OMP NUM THREADS=$SLURM CPUS PER TASK

module load gcc/13.2.0-fasrc0l # Load required modules
srun -c¢ S$SLURM CPUS PER TASK ./omp test.x

Job name

STD output

STD error

Queue / Partition
Time (D-HH:MM)

Reserved memory (default in MB)

H= = oS H F

(2) Submit the job to the queue

> sbatch omp test.run
e

st HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Example: Scaling - Compute Pl in Parallel

Monte-Carlo approximation of Pl

Calculating Pl in serial Calculating Pl in parallel

e 2r >

As = (2r)? = 4r? Em:;
= 2 tas
Be = BE g [task 3
e D task 4

Images credit: LLNL
https://hpc.linl.gov/documentation/tutorials/introduction-parallel-computing-tutorial##ExamplesPI

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Example: Scaling - Compute Pl in Parallel

(1) Setup - get a copy of the code and compile it, e.g.,

> mkdir ~/OpenMP

> cd OpenMP

> git clone https://github.com/fasrc/User Codes.git

(2) Review the source code and compile the program

> cd User Codes/Parallel Computing/OpenMP/Example3
> module load intel/23.2.0-fasrcO1

> make

(3) Run the program
> sbatch sbatch.run

(4) Explore the output (the “omp dot.dat” file), e.g.,
> cat omp pi.dat

Number of threads: 8

Exact value of PI: 3.14159

Estimate of PI: 3.14158

Time: 0.32 sec.

(5) Run the program with different thread number —1, 2, 4, 8 — and record the run times for each case. This will be needed to compute
the speedup and efficiency (NOTE: Currently set up to run directly with 1, 2, 4, 8 threads and generate speedup figure)

https://github.com/fasrc/User Codes/tree/master/Parallel Computing/Example3
e

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/Example3

2zt HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Example: Scaling - Compute Pl in Parallel

How much faster will the program run?

Speedup: Time to complete the job

T(l)/ on one thread

T(n) — ~ Time to complete the job
~ on n threads

S(n) =

Efficiency:

S(n) Tells you how efficiently you parallelize

E(n) — , your code

2zt HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Example: Scaling - Compute Pl in Parallel

You may use the speedup.py Python code to generate to calculate the speedup and
efficiency. It generates the below table plus a speedup figure.

100.00
2 1.28 2.00 100.00
4 0.64 4.00 100.00
8 0.32 8.00 100.00

https://github.com/fasrc/User Codes/tree/master/Parallel Computing/Example3
e

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/Example3

sate HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

81 —— Ideal speedup
-== Speedup

1 2 3 4 5 6 7 8
Number of threads
e

sate HARVARD FAS Research Computing

Division of Science

8 UNIVERSITY https://rc.fas.harvard.edu

Overview

- MPI Jobs / Workflows

« Hybrid (MPI+OpenMP) Jobs / Workflows
e

sz HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

What is MPI?

M P | = Massage Passing Interface

MPI is a specification for the developers and users of message passing libraries. By itself,
itis NOT a library

= MPI primarily addresses the message-passing parallel programming model: data is
moved from the address space of one process to that of another process through
cooperative operations on each process

" Most recent version is MPI-3

= Actual MPI library implementations differ in which version and features of the MPI
standard they support
e

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

MPI Programming Model

= Originally MPI was designed for distributed memory
architectures

= As architectures evolved, MPIl implementations adapted their
libraries to handle shared, distributed, and hybrid architectures

= Today, MPI runs on virtually any hardware platform
o Shared Memory
o Distributed Memory
o Hybrid

= Programing model remains clearly distributed memory model,
regardless of the underlying physical architecture of the
machine

= Explicit parallelism — programmer is responsible for correct
implementation of MPI

sz HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Reasons for using MP]

= Standardization - MPI is the only message passing specification which can be considered a standard. It is
supported on virtually all HPC platforms

= Portability - There is little or no need to modify your source code when you port your application to a
different platform that supports (and is compliant with) the MPI standard

= Performance Opportunities - Vendor implementations should be able to exploit native hardware features
to optimize performance. Any implementation is free to develop optimized algorithms

= Functionality - There are over 430 routines defined in MPI-3, which includes the majority of those in MPI-2
and MPI-1

= Availability - A variety of implementations are available, both vendor and public domain

sate HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

MPI Language Interfaces

= C/C++
u Fortran
= Java

= Python (mpidpy, pyMPI, pypar, MYMPI)
= R (Rmpi)

= Perl (Parallel::MPI)

= MATLAB (Matlab Parallel Server / DCS)

= QOthers

st HARVARD FAS Research Computing

Division of Science

E {UNIVERSITY https://rc.fas.harvard.edu

Compiling MPI Programs

Intel + OpenMPI / Mpich:
module load intel/23.2.0-fasrcO1

MPI _ module load openmpi/4.1.5-fasrc03
Implementation LR (e FEK) mpicxx —O mpltest.x mpitest.cpp

GNU + OpenMPI / Mpich:

module load gcc/10.2.0-fasrc01
module load openmpi/4.1.1-fasrcO1
mpicxx —o mpl test.x mpl test.cpp

Intel + Intel-MPI:
module load intel/23.2.0-fasrcO1

module load intelmpi/2021.10.0-fasrcO1
mplilicpx —O mpl test.x mpl test.cpp

sate HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu

Running MPI Programs (1)

Interactive test jobs:

(1) Start an interactive bash shell
> salloc -p test —n 4 —-—mem=4G -t 0-06:00

(2) Load required modules, e.g.,
> module load gcc/13.2.0-fasrc0l openmpi/4.1.5-fasrc03

(3) Compile your code (or use a Makefile)
> mplicxx —0 mpiltest.x mpitest.cpp

(4) Run the code

> mpirun -np 4 ./mpitest.x
Rank 0 out of 4

Rank 1 out of 4

Rank 2 out of 4

Rank 3 out of 4

End of program.

sate HARVARD FAS Research Computing

Division of Science

28 UNIVERSITY https://rc.fas.harvard.edu
Running MPI Programs (2)
Batch jobs:

(1) Compile your code, e.g.,
> module load gcc/13.2.0-fasrc0l openmpi/4.1.5-fasrc03
> mpicxx —o0 mpitest.x mpitest.cpp

(2) Prepare a batch-job submission script
#!/bin/bash

#SBATCH -J mpi job # Job name

#SBATCH -o slurm.out # STD output

#SBATCH -e slurm.err # STD error

#SBATCH -p shared # Queue / partition
#SBATCH -t 0-00:30 # Time (D-HH:MM)
#SBATCH —--mem-per-cpu=4000 # Memory per MPI task
#SBATCH -n 8 # Number of MPI tasks

module load gcc/13.2.0-fasrc0l openmpi/4.1.5-fasrc03 # Load required modules
srun -n SSLURM NTASKS --mpi=pmix ./hello mpi.x

(3) Submit the job to the queue
> sbatch mpi test.run

sate HARVARD FAS Research Computing

Division of Science

8 UNIVERSITY https://rc.fas.harvard.edu

Running MPI Programs (3)

Intel & Intel-MPI

#!/bin/bash

#SBATCH -J mpitest # job name

#SBATCH -o mpitest.out # standard output file
#SBATCH -e mpitest.err # standard error file
#SBATCH -p test # partition

#SBATCH -n 8 # ntasks

#SBATCH -t 00:30:00 # time in HH:MM:SS
#SBATCH --mem-per-cpu=4000 # memory in megabytes

--- Load the required software modules., e.g., —---
module load intel/23.2.0-fasrc0l intelmpi/2021.10.0-fasrc01l

--- Run the executable ---
—-—-— With Intel-MPI, you need to ensure it uses pmi2 instead of pmix ---

srun -n $SLURM NTASKS --mpi=pmi2 ./mpitest.x

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

Running MPI Programs (4)

= Sometimes programs can be picky about having MPI available on all the nodes it runs on,
so it is good to have MPI module loads in your .bashrc file

= Some codes are topology sensitive thus the following slurm options can be helpful
o ——contiguous # Contiguous set of nodes
o ——ntasks-per-node # Number of tasks per node
o ——hint # Bind tasks according to hints
o ——distribution, -m # Specify distribution method for tasks

= For hybrid mode jobs you would set both —c and —n

https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/mc_support.html
https://www.rc.fas.harvard.edu/resources/documentation/software-development-on-odyssey/hybrid-mpiopenmp-codes-on-odyssey

https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/mc_support.html
https://www.rc.fas.harvard.edu/resources/documentation/software-development-on-odyssey/hybrid-mpiopenmp-codes-on-odyssey

sate HARVARD FAS Research Computing

Division of Science

B8 UNIVERSITY https://rc.fas.harvard.edu

MPI Examples

1. MPI Hello World program

2. Parallel FOR loops in MPI — dot product
3. Scaling — speedup and efficiency

4. Parallel Matrix-Matrix multiplication

5. Parallel Lanczos algorithm

https://qithub.com/fasrc/User Codes/tree/master/Courses/CS205/MP| 2021

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2021

szt HARVARD FAS Research Computing

Division of Science

8 UNIVERSITY https://rc.fas.harvard.edu

Overview

« Hybrid (MPI+OpenMP) Jobs / Workflows
e

2zt HARVARD FAS Research Computing

Division of Science

E¥ UNIVERSITY https://rc.fas.harvard.edu

Hybrid (MPI+OpenMP) Parallel Programming

= OpenMP is used for computationally intensive
work on each node

network

= MPI is used for communication and data sharing
between nodes

= This allows parallelism to be implemented to the
full scale of a cluster

https://docs.rc.fas.harvard.edu/kb/hybrid-mpiopenmp-codes-on-odyssey/

https://docs.rc.fas.harvard.edu/kb/hybrid-mpiopenmp-codes-on-odyssey/

2zt HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Running Hybrid Applications

Example 1: 2 MPT tasks with 4 OpenMP threads per Example 2: 4 Nodes with 1 MPT task per node and
MPI task, using 8 cores in total 32 OpenMP threads per MPI task, using 128 cores in
total (across 4 nodes)

#!/bin/bash #!/bin/bash

#SBATCH -J hybrid test #SBATCH -J hybrid test
#SBATCH -o hybrid test.out #SBATCH -o hybrid test.out
#SBATCH -e hybrid test.err #SBATCH -e hybrid test.err
#SBATCH -p shared #SBATCH -p shared

#SBATCH -n 2 #SBATCH -n 4

#SBATCH -c 4 #SBATCH -c 32

#SBATCH -t 180 #SBATCH --ntasks-per-node=1
#SBATCH —--mem-per-cpu=4G #SBATCH -t 180

#SBATCH --mem-per-cpu=128G

export OMP NUM THREADS=4
srun -n 2 -c 4 --mpi=pmix ./hybrid test.x export OMP NUM THREADS=32
srun -n 4 -c 32 --mpi=pmix ./hybrid test.x

sz HARVARD FAS Research Computing

Division of Science

&8 UNIVERSITY https://rc.fas.harvard.edu

Summary and hints for efficient parallelization

O Is it even worth parallelizing my code?

= Does your code take an intractably long amount of time to complete?

= Do you run a single large model or do statistics on multiple small runs?

= Would the amount of time it take to parallelize your code be worth the gain in speed?
 Parallelizing established code vs. starting from scratch

= Established code: Maybe easier / faster to parallelize, but my not give good performance or scaling

= Start from scratch: Takes longer, but will give better performance, accuracy, and gives the
opportunity to turn a “black box” into a code you understand

sz HARVARD FAS Research Computing

sl

Division of Science

UNIVERSITY https://rc.fas.harvard.edu

Summary and hints for efficient parallelization

d

oo O O O

Increase the fraction of your program that can be parallelized. Identify the most time-consuming parts of
your program and parallelize them. This could require modifying your intrinsic algorithm and code’s
organization

Balance parallel workload

Minimize time spent in communication

Use simple arrays instead of user defined derived types

Partition data. Distribute arrays and matrices — allocate specific memory for each MPI process

For I/0 intensive applications implement parallel I/0O in conjunction with a high-performance parallel
filesystem, e.g., Lustre

Rk

Thank you! Questions? Comments?
Plamen Krastev, PhD

Harvard - FAS Research Computing

