

New Users Training
Introduction to FASRC clusters

Learning objectives 1 – FASRC account

- Learn how to request an FASRC account
- o Activate your new account
- How to modify your account or add groups

Learning objectives 2 – Intro to HPC

- What is high-performance computing (HPC)? How is it different from a desktop/laptop?
- Laptop vs. Cannon
- o Why HPC?
- FASRC clusters
- Cluster architecture
- Job scheduler
- Choose compute resources for jobs
 - Memory, cores
 - Partitions, file systems
- Storage
- Data Management
- Cluster customs and responsibilities

Learning objectives 3 – Documentation and help

- FASRC docs
- GitHub User_codes
- Office hours
- Tickets

Request FASRC account

https://docs.rc.fas.harvard.edu/kb/quickstart-guide/

- Request an account using Account Request Tool <u>https://portal.rc.fas.harvard.edu/request/account/new</u>
 - Use Harvard Key option
- 2. Set FASRC password https://portal.rc.fas.harvard.edu/p3/pwreset/
- 3. Set two-factor authentication https://docs.rc.fas.harvard.edu/kb/openauth/
- 4. Set FASRC VPN (needed for mounting storage, OOD, level 3 data, license server access) https://docs.rc.fas.harvard.edu/kb/vpn-setup/
- Review intro training

How to modify your account

- Change labs: https://docs.rc.fas.harvard.edu/kb/change-lab-group/
- Add a lab:
 - Portal gives access to lab storage: https://docs.rc.fas.harvard.edu/kb/additional-groups/
 - If you work for more than 1 PI, and need access to lab slurm account (more on slurm later), send a
 ticket
- Never request a second account!!
- Membership in the FASRC mailing-list is required
- Account needs to be used in the last 12 months to be active.
- After 12 months of inactivity
 - Account is disabled, but nothing is deleted
 - Can be reactivated with Pl's/admin approval

What is HPC?

- HPC: High performance computing
- HPC: biggest and fastest computing machines right now
- Supercomputers: rule of thumb at least 100 times as powerful as a PC (personal computer)
- Jargon: other terms
 - Supercomputing
 - Cyberinfrastructure (CI)
 - Cluster computing

Laptop vs. Cannon

MacBook Pro

- 1 CPU (processor)
- 4-12 cores per CPU
- o Memory: 16-96 GB

core		

Cannon typical nodes

- o 2 CPUs
- o 24-32 cores per CPU
- Memory: 184-2000 GB
- o 1260+ nodes!!!

core		
(

core		

Why HPC?

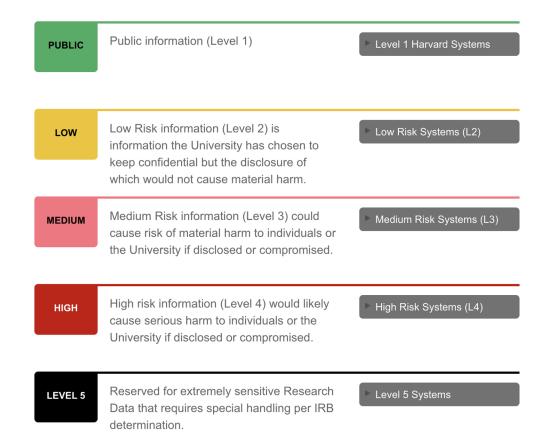
- Size: problems that can't fit on a desktop/laptop, for example 500+ GB of RAM or 100s of cores
- Speed: problems that take months on a laptop may take a few hours on a supercomputer
- Amount: need 1000s of runs

600 miles/hour

What about FASRC clusters?

Massachusetts Green HPC Center (MGHPCC)

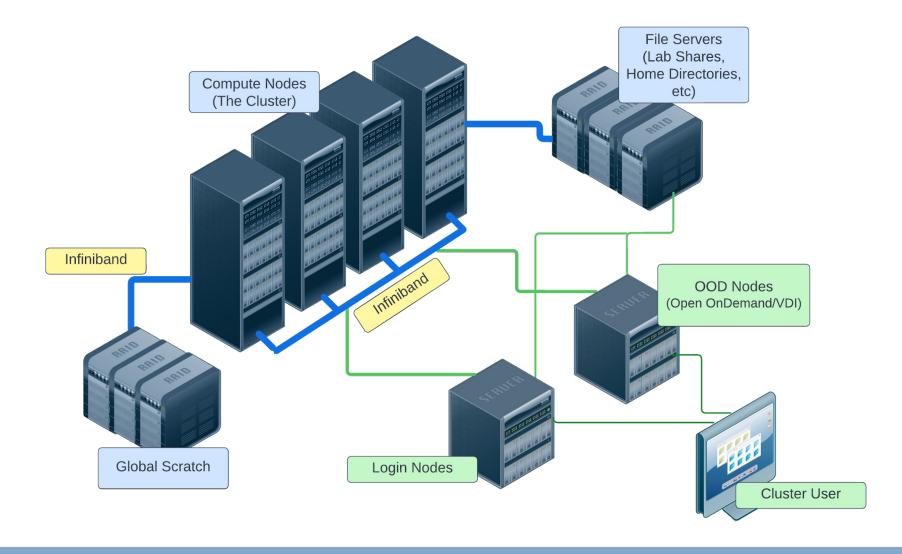
Cannon cluster

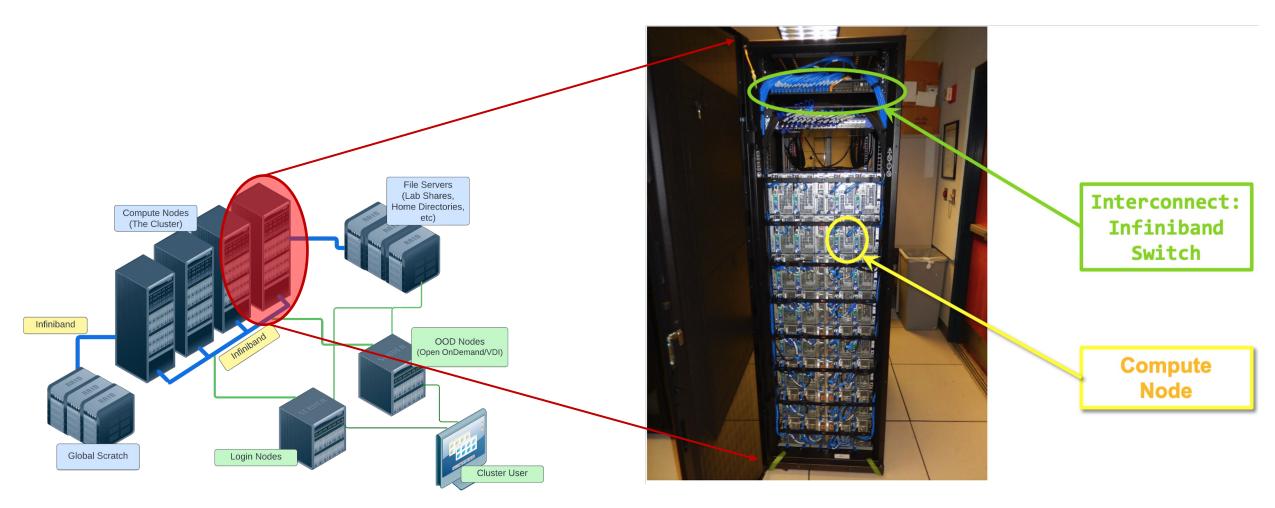

FASRC clusters: Cannon and FASSE

Cannon

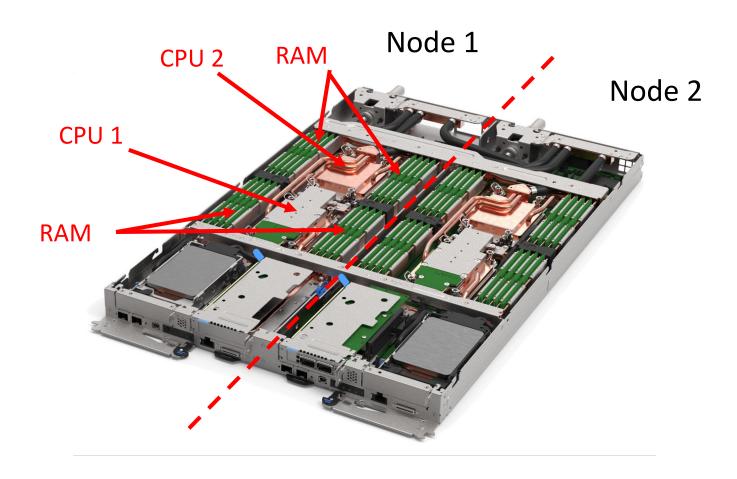
- General purpose
- Only level 1 and 2 data

FASSE

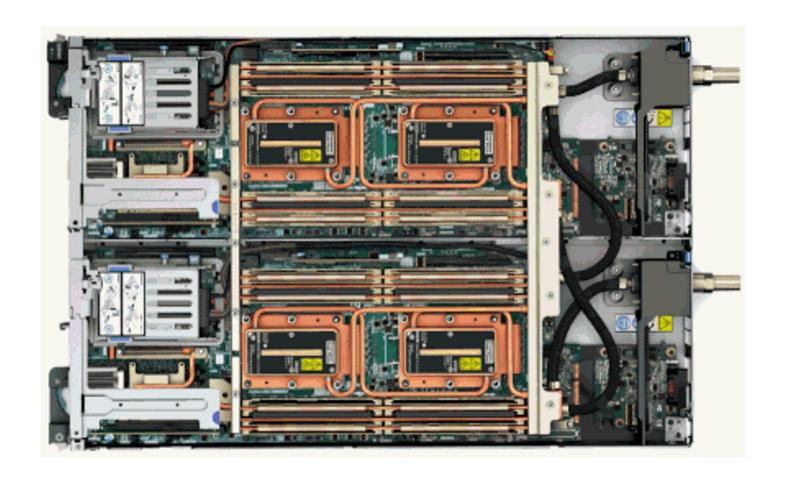

- FAS Secure Environment
- Secure multi-tenant environment
- Analysis of sensitive datasets with DUAs and IRBs
- Level 3 data, no level 4 data
- PI/lab responsibility to know their data
- https://policy.security.harvard.edu/
- https://docs.rc.fas.harvard.edu/kb/data-useagreements/
- o https://security.harvard.edu/
- https://docs.rc.fas.harvard.edu/kb/fasse/


Cluster architecture

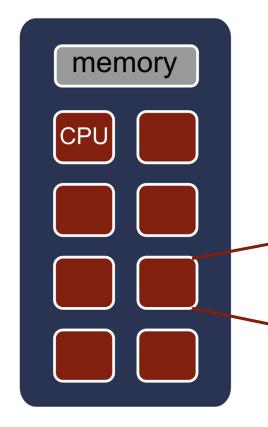
Rack



From HPC@LSU training (http://www.hpc.lsu.edu/training/weekly-materials/2022-Fall/HPC UserEnv1 Fall2022.pdf)

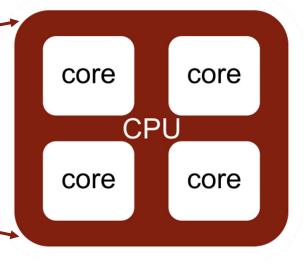

Node

Node water cooling



Node, processors, core

Node: a computer in the cluster

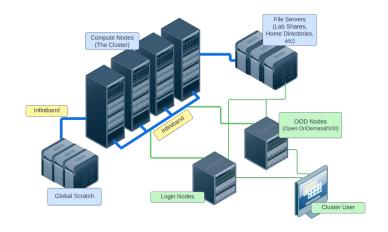


CPU

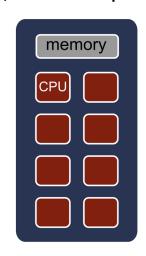
- Central processing unit, processor
- Can have many cores

Cores

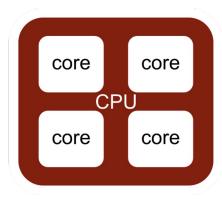
- Basic unit of compute
- o Runs a single instruction of code



Nomenclature summary


Cluster

Top level unit of a supercomputer


Node

One host in the cluster (i.e., one computer)

Core

Basic unit of computer

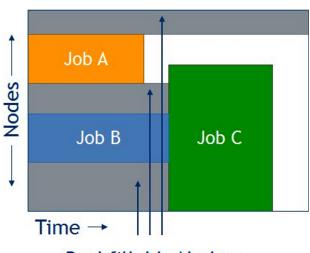
New term: Job

A user's request to use a certain amount of resources for a specific amount of time

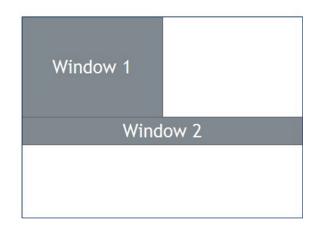
Glossary: https://docs.rc.fas.harvard.edu/kb/glossary/

Job scheduler

- The Cluster is a multi-tenant environment, so how can everyone use it fairly?
- Job scheduler!
- Slurm: Simple Linux Utility for Resource Management
 - Manages job queue for a cluster of resources
 - Prioritizes jobs
 - Provides status of running, queue, completed and failed jobs
 - Determines the order jobs are executed
 - On which node(s) jobs are executed



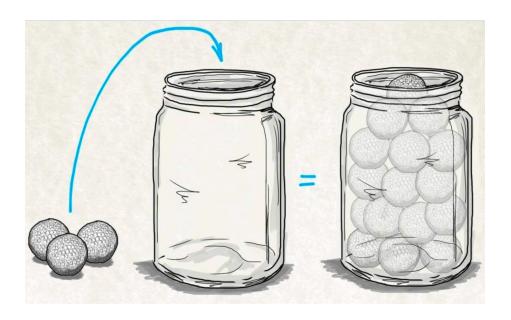
Job management philosophy


- Prioritize workload
- Backfill idle node to maximize cluster use

Job Priority

- Not first come, first served
- Job with higher priority scheduled ahead of jobs with lower priority
- Priority depends on
 - Fairshare
 - Amount of time pending
 - Group priority

Backfillable Nodes





How to maximize cluster usage?

1. Fill in high-priority jobs

2. Backfill with low-priority jobs

Choosing computational resources

- How do we choose memory, cores, partitions, and file systems?
- First time ever running on a cluster?
 - Run a test case choosing similar resources as the machine you are currently using
 - Check how efficient your job was and adjust it accordingly
- Increasing a job/analysis/simulation?
 - Run for a small test case
 - Increase size by 1.5, 2.0, 2.5x and check how job scaled
 - Then you can have a rough estimation of how much a first trial production job of ~10x would require

Cannon partitions

Documentation: https://docs.rc.fas.harvard.edu/kb/running-jobs/

Partitions	shared	gpu	test	gpu_test	serial_requeue	gpu_requeue	bigmem	ultramem	intermediate	bigmem_int ermediate	unrestricted	pi_lab
Time Limit	3 days	3 days	12 h	12 h	3 days	3 days	3 days	3 days	3-14 days	3-14 days	no limit	varies
# Nodes	264	25	27	10	1264	138	30	3	12	4	8	varies
# Cores / Node	48	64 + 4 A100	48	32 + 4 V100	varies	varies	64	64	48	64	64	varies
Memory / Node (GB)	196	375	196	375	varies	varies	499	2000	184	499	256	varies

FASSE partitions

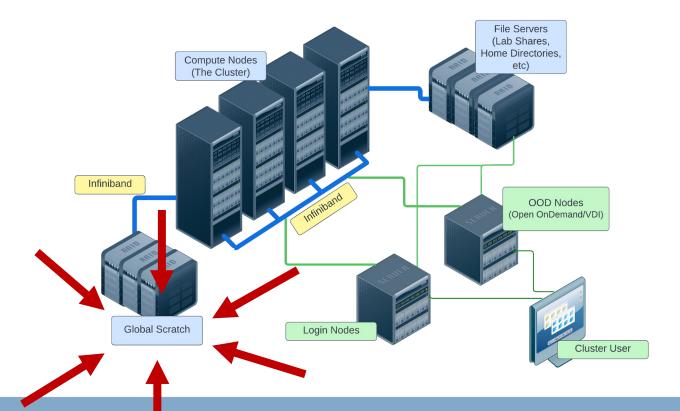
Documentation: https://docs.rc.fas.harvard.edu/kb/fasse/

Partitions	fasse	fasse_gpu	test	serial_requeue	fasse_bigmem	ultramem	remoteviz	pi_lab
Time Limit	7 days	7 days	12 h	7 days	7 days	7 days	7 days	varies
# Nodes	42	4	5	65	6	1	1	varies
# Cores / Node	48	32 + 4 V100	48	varies	64	64	32	varies
Memory / Node (GB)	184	373	5	varies	499	2000	373	varies

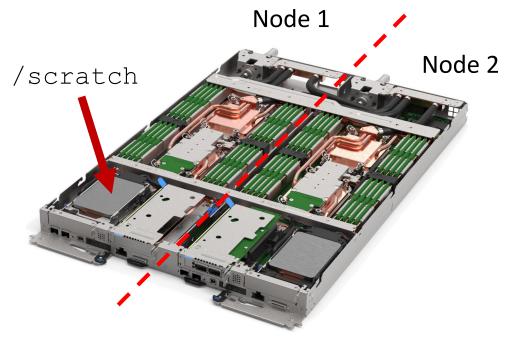
Storage

Tier storage documentation: https://www.rc.fas.harvard.edu/services/data-storage/

	Home Directories	Lab Directory (Startup)	Local Scratch	Global Scratch	Tier Storage
Mount Point	\$HOME /n/home#/\$USER /n/home_fasse/\$USER	/n/holylabs/pi_lab	/scratch	\$SCRATCH /n/holyscratch01/pi_lab	/n/pi_lab
Size Limit	100GB	1- 4TB	70GB/node	2.4PB total	Based on Tier
Availability	All cluster nodes + Desktop/laptop	All cluster nodes	Local compute node only	All cluster nodes	All cluster nodes/ mountable
Retention Policy	Indefinite	Indefinite	Job duration	90 days	Indefinite
Backup	Hourly snapshot + Daily Offsite	No backup	No backup	No backup	Depending on Tier
Performance	Moderate. Not suitable for high I/O	Moderate. Not suitable for high I/O	Suited for small file I/O intensive jobs	Appropriate for large file I/O intensive jobs	Depending on Tier
Cost	Free	Free max of 4TB	Free	Free	Paid



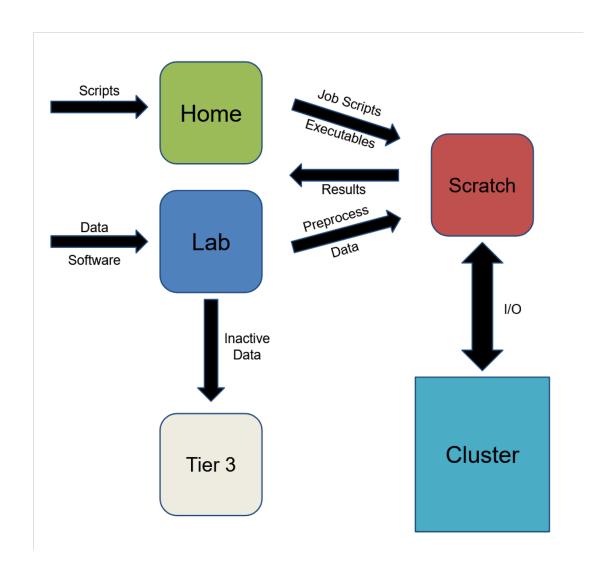
Storage schematics


Global Scratch

- Networked scratch
- o Global variable: \$SCRATCH
- o Path:/n/holyscratch01/pi lab

Local Scratch

- Storage on the node
- o Path: /scratch


From https://lenovopress.lenovo.com/lp1603-thinksystem-sd650-v3-server

Data management

- Home
 - Backed up with daily snapshots (up to 2 weeks)
 - "Valuable" and small code
- Global scratch
 - Temporary storage
 - Copy job scripts and executables for jobs
 - Input data
 - Output results
- Lab storage
 - Permanent storage
 - If you have code here and not backed up, use version control (git)!!

Cluster customs and responsibilities (1)

Documentation: https://docs.rc.fas.harvard.edu/kb/responsibilities/

- Don't run anything on the login nodes
- Be as accurate as possible for memory requests
- Keep job counts reasonable: 10,000 job limit per user (scheduled or running)
- Request at least 10 minutes
- Don't overwhelm scheduler: wait 0.5 to 1 sec for sbatch and sacct commands

Cluster customs and responsibilities (2)

Documentation: https://docs.rc.fas.harvard.edu/kb/responsibilities/

- Use appropriate partition
- o Use serial requeue and gpu requeue when possible
- o Heavy I/O should be done on /scratch and \$SCRATH
- Keep at most 1000 files per directory (i.e., folder)
- No production work on test partitions
- Poorly behaved jobs will be terminated
- Don't mine digital currency or misuse Harvard resources

Publications Acknowledging the FASRC Cluster

Documentation: https://docs.rc.fas.harvard.edu/kb/attribution/

If you publish work performed on FASRC clusters, acknowledge it:

"The computations in this paper were run on the FASRC Odyssey cluster supported by the FAS Division of Science Research Computing Group at Harvard University."

FASRC documentation

- FASRC docs: https://docs.rc.fas.harvard.edu/
 - Search
- GitHub User_codes: https://github.com/fasrc/User_Codes/
- Getting help
 - Office hours: https://www.rc.fas.harvard.edu/training/office-hours/
 - Ticket
 - o Portal: http://portal.rc.fas.harvard.edu/rcrt/submit_ticket (requires login)
 - o Email: rchelp@rc.fas.harvard.edu

Upcoming trainings

Training calendar: https://www.rc.fas.harvard.edu/upcoming-training/

Getting started on the FASRC clusters with Open OnDemand

- new users not familiar with command-line interface
- prefers to use a GUI
- Single-node jobs
- Working FASRC account with cluster access
- Content
 - Access Open OnDemand
 - Launch Jupyter, Rstudio Server, Remote Desktop
 - Install Rstudio Server packages
 - Install python packages for Jupyter
 - Launch software from Remote Desktop

Getting started on the FASRC clusters with CLI

- Users familiar with command-line interface
- New to Cannon and FASSE, but familiar with HPC systems
- Working FASRC account with cluster access
- Content
 - Submit interactive job
 - Submit batch job
 - Monitor jobs
 - Cluster software (modules, spack)

Thank you:)
FAS Research Computing