

New Users Training Introduction to FASRC clusters

Learning objectives 1 – FASRC account

- Learn how to request an FASRC account
- Activate your new account
- \circ $\,$ How to modify your account or add groups $\,$

Learning objectives 2 – Intro to HPC

- What is high-performance computing (HPC)? How is it different from a desktop/laptop?
- Laptop vs. Cannon
- Why HPC?
- FASRC clusters
- Cluster architecture
- Job scheduler
- Choose compute resources for jobs
 - Memory, cores
 - Partitions, file systems
- Storage
- o Data Management
- o Cluster customs and responsibilities

Learning objectives 3 – Documentation and help

- FASRC docs <u>https://docs.rc.fas.harvard.edu</u>
- GitHub User Codes <u>https://github.com/fasrc/User_Codes</u>
- Office Hours <u>https://rc.fas.harvard.edu/training/office-hours</u>
- Tickets:
 via Portal <u>https://www.rc.fas.harvard.edu/about/contact/</u> or by email <u>rchelp@rc.fas.harvard.edu</u>

Request FASRC account

https://docs.rc.fas.harvard.edu/kb/quickstart-guide/

- Request an account using Account Request Tool <u>https://portal.rc.fas.harvard.edu/request/account/new</u>
 - Use Harvard Key option
- 2. Set FASRC password <u>https://portal.r c.fas.harvard.edu/p3/pwreset/</u>
- 3. Set two-factor authentication <u>https://docs.rc.fas.harvard.edu/kb/openauth/</u>
- 4. Set FASRC VPN (needed for mounting storage, OOD, level 3 data, license server access) <u>https://docs.rc.fas.harvard.edu/kb/vpn-setup/</u>
- 5. Review intro training

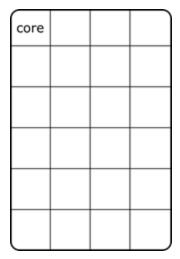
How to modify your account

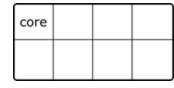
- Change labs: <u>https://docs.rc.fas.harvard.edu/kb/change-lab-group/</u>
- Add a lab:
 - Portal gives access to lab storage: <u>https://docs.rc.fas.harvard.edu/kb/additional-groups/</u>
 - If you work for more than 1 PI, and need access to lab slurm account (more on slurm later), send a ticket
- Never request a second account!!
- Membership in the FASRC mailing-list is required
- Account needs to be used in the last 12 months to be active
- \circ After 12 months of inactivity
 - Account is disabled, but nothing is deleted
 - Can be reactivated with PI/admin approval

What is HPC?

- HPC: High performance computing
- HPC: biggest and fastest computing machines right now
- Supercomputers: rule of thumb at least 100 times as powerful as a PC (personal computer)
- \circ Jargon: other terms
 - Supercomputing
 - Cyberinfrastructure (CI)
 - Cluster computing

Laptop vs. Cannon


MacBook Pro


- 1 CPU (processor)
- 4-12 cores per CPU
- Memory: 16-96 GB

Cannon typical nodes

- o 2 CPUs
- o 24-56 cores per CPU
- Memory: 184-2000 GB
- **1400+ nodes!!!**

core		

Why HPC?

- Size: problems that can't fit on a desktop/laptop, for example 500+ GB of RAM or 100s of cores
- Speed: problems that take months on a laptop may take a few hours on a supercomputer
- Amount: need 1000s of runs

45 miles/hour

600 miles/hour

What about FASRC clusters?

Massachusetts Green HPC Center (MGHPCC)

Cannon cluster

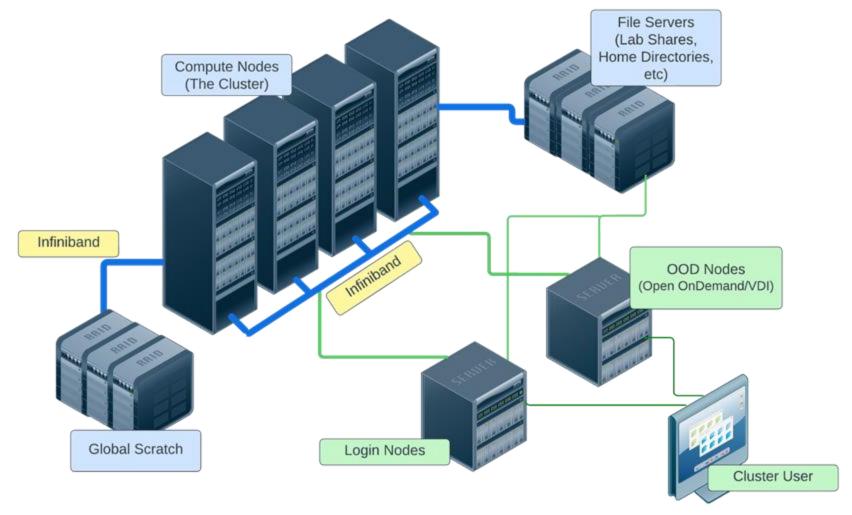
From https://www.servethehome.com/the-harvard-cannon-powered-by-lenovo-neptune/

FASRC clusters: Cannon and FASSE

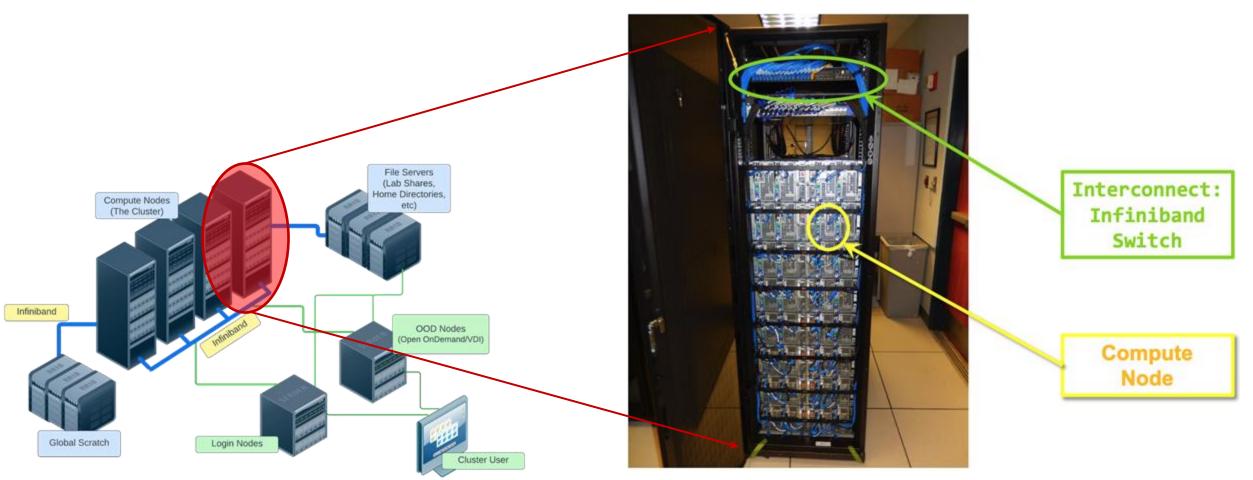
Cannon

- General purpose
- \circ Only level 1 and 2 data

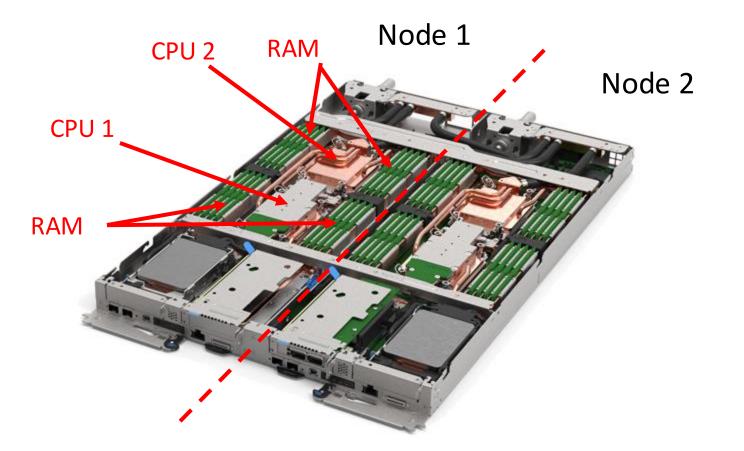
FASSE


- FAS Secure Environment
- Secure multi-tenant environment
- Analysis of sensitive datasets with DUAs and IRBs
- Level 3 data, no level 4 data
- PI/lab responsibility to know their data
- o <u>https://policy.security.harvard.edu/</u>
- <u>https://docs.rc.fas.harvard.edu/kb/data-use-agreements/</u>
- o <u>https://security.harvard.edu/</u>
- o <u>https://docs.rc.fas.harvard.edu/kb/fasse/</u>

PUBLIC	Public information (Level 1)	Level 1 Harvard Systems		
LOW	Low Risk information (Level 2) is information the University has chosen to	Low Risk Systems (L2)		
	keep confidential but the disclosure of which would not cause material harm.			
MEDIUM	Medium Risk information (Level 3) could cause risk of material harm to individuals or the University if disclosed or compromised.	Medium Risk Systems (L3)		
HIGH	High risk information (Level 4) would likely cause serious harm to individuals or the	High Risk Systems (L4)		
	University if disclosed or compromised.			
LEVEL 5	Reserved for extremely sensitive Research Data that requires special handling per IRB determination.	Level 5 Systems		

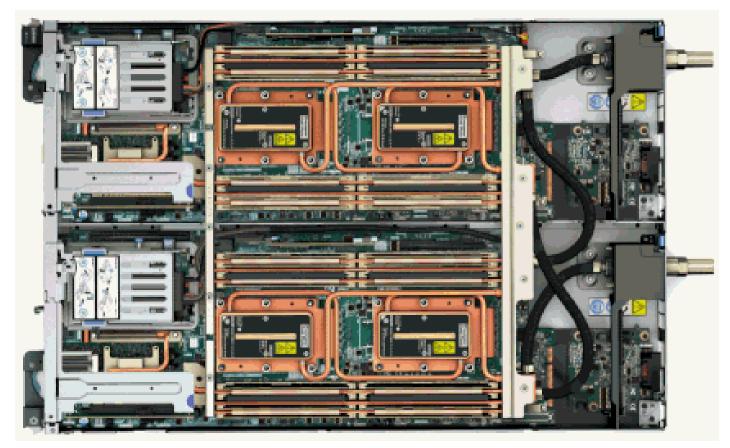

Cluster architecture

Rack



From HPC@LSU training (<u>http://www.hpc.lsu.edu/training/weekly-materials/2022-</u> Fall/HPC_UserEnv1_Fall2022.pdf)

Node



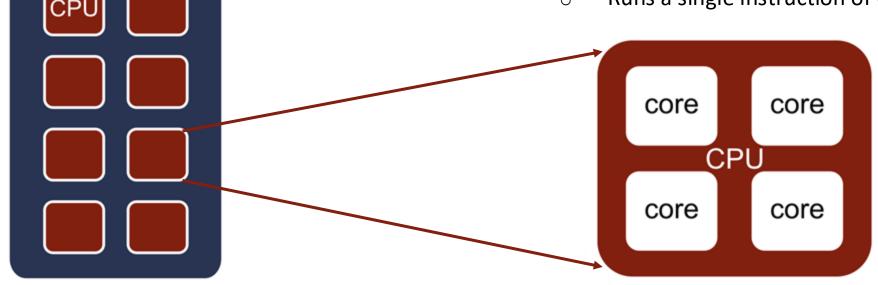
From https://lenovopress.lenovo.com/lp1603-thinksystem-sd650-v3-server

Node water cooling

From https://www.rc.fas.harvard.edu/blog/cannon-makes-top-500-list/

Node, processors, core

Node: a computer in the cluster

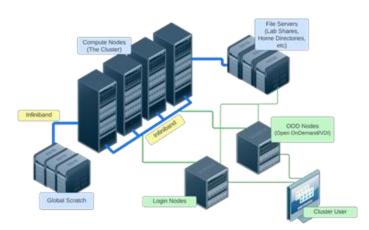

memory

CPU

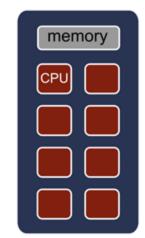
- Central processing unit, processor
- Can have many cores

Cores

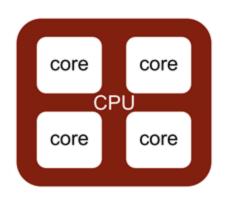
- Basic unit of compute
- Runs a single instruction of code



Nomenclature summary


Cluster

Top level unit of a supercomputer


One host in the cluster (i.e., one computer)

Node

Core

Basic unit of computer

New term: Job

A user's request to use a certain amount of resources for a specific amount of time

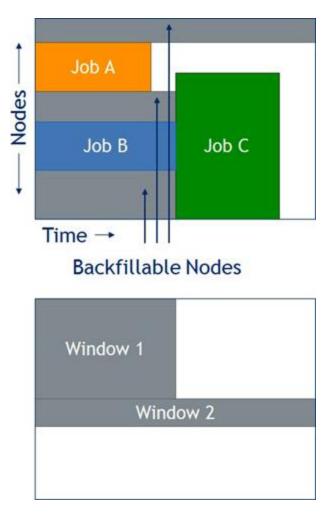
Glossary: https://docs.rc.fas.harvard.edu/kb/glossary/

Adapted from HPC@LSU training (<u>http://www.hpc.lsu.edu/training/weekly-materials/2021-Summer/HPC_UserEnv_2021_Summer_session_2.pdf</u>)

HARVARD UNIVERSITY

Job scheduler

- The Cluster is a multi-tenant environment, so how can everyone use it fairly?
- Job scheduler!
- Slurm: Simple Linux Utility for Resource Management
 - Manages job queue for a cluster of resources
 - Prioritizes jobs
 - Provides status of running, queue, completed and failed jobs
 - Determines the order jobs are executed
 - On which node(s) jobs are executed

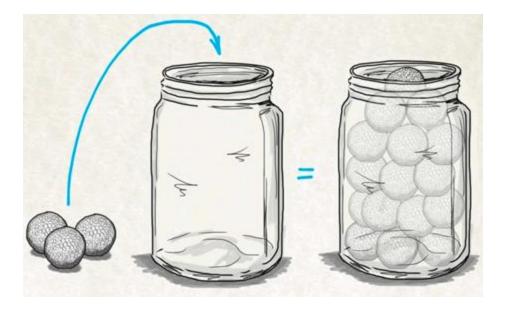


Job management philosophy

- $\circ \quad \text{Prioritize workload}$
- Backfill idle node to maximize cluster use

Job Priority

- Not first come, first served
- Job with higher priority scheduled ahead of jobs with lower priority
- o Priority depends on
 - Group Fairshare
 - Amount of time pending


Adapted from HPC@LSU training (<u>http://www.hpc.lsu.edu/training/weekly-materials/2021-Summer/HPC_UserEnv_2021_Summer_session_2.pdf</u>)

How to maximize cluster usage?

1. Fill in high-priority jobs

2. Backfill with low-priority jobs

Adapted from HPC@LSU training (<u>http://www.hpc.lsu.edu/training/weekly-materials/2021-Summer/HPC_UserEnv_2021_Summer_session_2.pdf</u>)

Choosing computational resources

- How do we choose memory, cores, partitions, and file systems?
- First time ever running on a cluster?
 - Run a test case choosing similar resources as the machine you are currently using
 - Check how efficient your job was and adjust it accordingly
- Increasing a job/analysis/simulation?
 - Run for a small test case
 - Increase size by 1.5, 2.0, 2.5x and check how job scaled
 - Then you can have a rough estimation of how much a first trial production job of ~10x would require

Cannon partitions

Documentation: <u>https://docs.rc.fas.harvard.edu/kb/running-jobs/</u>

Partitions	sapphire	shared	gpu	test	gpu_test	serial_requeue	gpu_requeue	bigmem	intermediate	bigmem_ intermediate	unrestricted	pi_lab
Time Limit	3 days	3 days	3 days	12 h	12 h	3 days	3 days	3 days	3-14 days	3-14 days	no limit	varies
# Nodes	192	288	36	12	14	varies	varies	4	12	3	8	varies
# Cores / Node	112	48	64 + 4 A100	112	64 + 8 A100 MIG	varies	varies	112	112	64	48	varies
Memory / Node (GB)	1004	184	1004	1004	375	varies	varies	2000	1004	2000	184	varies

FASSE partitions

Documentation: <u>https://docs.rc.fas.harvard.edu/kb/fasse/</u>

Partitions	fasse	fasse_gpu	test	serial_requeue	fasse_bigmem	fasse_ultramem	remoteviz	pi_lab
Time Limit	7 days	7 days	12 h	7 days	7 days	7 days	7 days	varies
# Nodes	42	4	5	varies	17	1	1	varies
# Cores / Node	48	64 + 4 A100	48	varies	64	64	32	varies
Memory / Node (GB)	184	499	184	varies	499	2000	373	varies

Which partitions can I use?

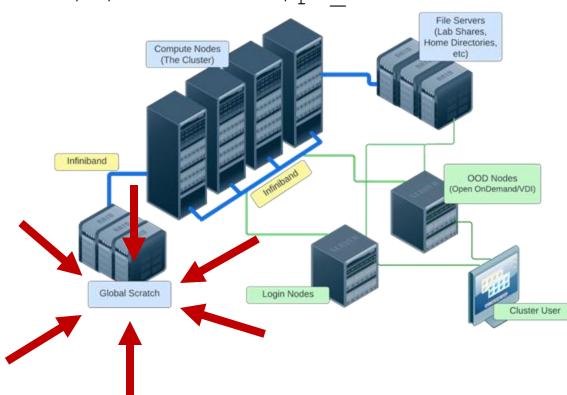
Documentation: https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands/

[jharvard@boslogin02 ~]\$ spart								
Partition	State	Cores	GPUs	Average Mem/Node(GB)	Nodes	Time Limit		
bigmem	UP	448	0	2015	4	3-00:00:00		
bigmem_intermediate	UP	192	0	2015	3	14-00:00:00		
gpu	UP	2304	144	1007	36	3-00:00:00		
gpu_requeue	UP	9184	698	772	156	3-00:00:00		
gpu_test	UP	896	112	503	14	12:00:00		
intermediate	UP	1344	0	1007	12	14-00:00:00		
remoteviz	UP	32	0	377	1	3-00:00:00		
sapphire	UP	21504	0	1007	192	3-00:00:00		
serial_requeue	UP	88300	690	438	1457	3-00:00:00		
shared	UP	13824	0	188	288	3-00:00:00		
test	UP	1344	0	1007	12	12:00:00		
ultramem	DRAIN	192	0	2015	3	3-00:00:00		
unrestricted	UP	384	0	188	8	UNLIMITED		

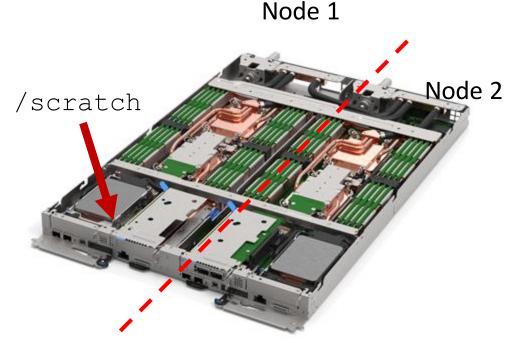
Storage

Tier storage documentation: <u>https://www.rc.fas.harvard.edu/services/data-storage/</u>

	Home Directories	Lab Directory (Startup)	Local Scratch	Global Scratch	Tier Storage
Mount Point	\$HOME /n/home#/\$USER /n/home_fasse/\$USER	/n/holylabs/LABS/pi_lab	/scratch	\$SCRATCH /n/netscratch/pi_lab	/n/pi_lab
Size Limit	100GB	4TB	70+ GB/node	2.4PB total	Based on Tier
Availability	All cluster nodes + Desktop/laptop	All cluster nodes Local compute node only		All cluster nodes	All cluster nodes/ mountable
Retention Policy	Indefinite	Indefinite	Job duration	90 days	Indefinite
Backup	Hourly snapshot + Daily Offsite	No backup	No backup	No backup	Depending on Tier
Performance	Moderate. Not suitable for high I/O	Moderate. Not suitable for high I/O	Suited for small file I/O intensive jobs	Appropriate for large file I/O intensive jobs	Depending on Tier
Cost	Free	Free max of 4TB	Free	Free	Paid



Storage schematics

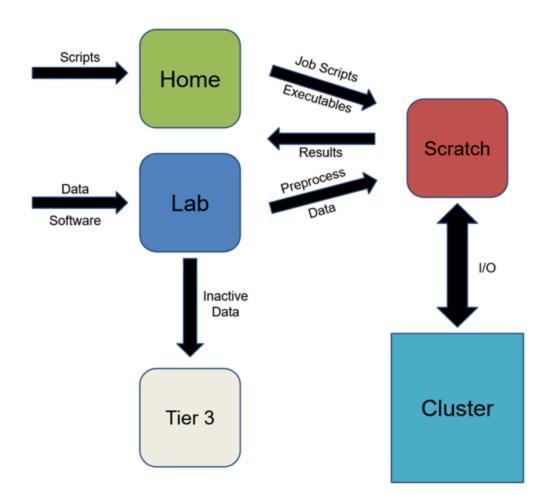

Global Scratch

- Networked scratch
- Global variable: \$SCRATCH
- o Path:/n/netscratch/pi_lab

Local Scratch

- \circ $\,$ Storage on the node
- o Path:/scratch

From https://lenovopress.lenovo.com/lp1603-thinksystem-sd650-v3-server



Data management

Documentation: <u>https://docs.rc.fas.harvard.edu/kb/data-</u> <u>storage-workflow-rdm/</u>

- o Home
 - Backed up with daily snapshots (up to 2 weeks)
 - "Valuable" and small code
- o Global scratch
 - Temporary storage
 - Copy job scripts and executables for jobs
 - Input data, output results
 - Do not have multiple jobs hitting the same file!!
- o Lab storage
 - Permanent storage
 - If you have code here and not backed up, use version control (git)!!

Cluster customs and responsibilities (1)

Documentation: https://docs.rc.fas.harvard.edu/kb/responsibilities/

- Don't run anything on the login nodes
- Be as accurate as possible for memory requests
- Keep job counts reasonable: 10,100 job limit per user (scheduled or running)
- o Request at least 10 minutes
- o Don't overwhelm scheduler: wait 0.5 to 1 sec for sbatch and sacct commands

Cluster customs and responsibilities (2)

Documentation: https://docs.rc.fas.harvard.edu/kb/responsibilities/

- Use appropriate partition
- o Use serial_requeue and gpu_requeue when possible
- Heavy I/O should be done on /scratch and \$SCRATCH
- Keep at most 1000 files per directory (i.e., folder)
- No production work on test partitions
- Poorly behaved jobs will be terminated
- Don't mine digital currency or misuse Harvard resources

Acknowledge using the FASRC Clusters

Documentation: https://docs.rc.fas.harvard.edu/kb/attribution/

• If you publish work performed on FASRC clusters, please acknowledge it:

"The computations in this paper were run on the FASRC cluster supported by the FAS Division of Science Research Computing Group at Harvard University."

Training session evaluation

Please, fill out our training session evaluation. Your feedback is essential for us to improve our trainings!!

https://tinyurl.com/FASRC-training

FASRC documentation

- FASRC docs: <u>https://docs.rc.fas.harvard.edu/</u>
 - If searching on Google add FASRC to your search
- GitHub User_Codes: <u>https://github.com/fasrc/User_Codes/</u>
- Getting help
 - Office hours: <u>https://www.rc.fas.harvard.edu/training/office-hours/</u>
 - Ticket
 - Portal: <u>http://portal.rc.fas.harvard.edu/rcrt/submit_ticket</u> (requires login)
 - Email: <u>rchelp@rc.fas.harvard.edu</u>

Upcoming training sessions

Training calendar: https://www.rc.fas.harvard.edu/upcoming-training/

Getting started on the FASRC clusters with Open OnDemand

- Audience
 - New users not familiar with command-line interface
 - Wants to use a GUI
- o **Requirements**
 - Single-node jobs
 - Working FASRC account with cluster access
- o Content
 - Access Open OnDemand
 - Launch Jupyter, Rstudio Server, Remote Desktop
 - Install Rstudio Server packages
 - Install python packages for Jupyter
 - Launch software from Remote Desktop

Getting started on the FASRC clusters with command line interface (CLI)

- Requirement: working FASRC account with cluster access
- \circ Audience
 - Users familiar with command-line interface
 - New to Cannon and FASSE, but familiar with HPC systems
- o Content
 - Submit interactive job with salloc
 - Submit batch job sbatch
 - Monitor jobs
 - Cluster software overview (modules, spack)

Thank you :) FAS Research Computing