



# Intro to High Performance Computing (HPC) and Open OnDemand (OOD)





# Learning Objectives

- Why HPC?
- What is HPC?
- Supercomputer components
- FASRC clusters
  - Cannon
  - FASSE (FAS secure environment)
- Open OnDemand/VDI
  - Jupyter Notebook, RStudio, Stata





# Why HPC?

- Size: problems that can't fit on a PC (personal computer), for example 500 GB of RAM
- Speed: problems that take months on a PC may take a few hours on a supercomputer
- Amount: need 1000s of runs











## What is HPC?

- HPC: biggest and fastest computing machines right now
- Supercomputers: rule of thumb at least 100 times as powerful as a PC (personal computer)
- Jargon: other terms
  - Supercomputing
  - Cyberinfrastructure (CI)
  - Cluster computing





## Node, processors, core

### Node

• A computer in the cluster

memory

Core, CPU, processor

- CPU: central processing unit
  - can have many cores
- Cores
  - basic unit of compute
  - runs a single instruction of code







## Cluster

### **Cannon Cluster**







## Cluster



TACC Stampede (https://www.tacc.utexas.edu/-/stampede-2-drives-the-frontiers-of-science-and-engineering-forward)









From HPC@LSU training (http://www.hpc.lsu.edu/training/weekly-materials/2022-Fall/HPC\_UserEnv1\_Fall2022.pdf)





## Node



### GPU

- Graphics processing unit
- Accelerator
- At FASRC: NVidia A100s





## **Cluster Architecture**





## **FASRC Clusters**

LEVEL 5

Cannon - general purpose

RVARD

VERI

- FASSE secure environment
  - The FAS Secure Environment (FASSE) is a secure multi-tenant cluster environment to provide Harvard researchers access to a secure enclave for analysis of sensitive datasets with DUA's and IRB's classified as Level 3.

| PUBLIC | Public information (Level 1)                                                                                                                                     | ► Level 1 Harvard Systems | е<br>[<br>П<br>с               |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|
| LOW    | Low Risk information (Level 2) is<br>information the University has chosen to<br>keep confidential but the disclosure of<br>which would not cause material harm. | ► Low Risk Systems (L2)   | <u>F</u><br>L<br>F             |
| MEDIUM | Medium Risk information (Level 3) could<br>cause risk of material harm to individuals or<br>the University if disclosed or compromised.                          | Medium Risk Systems (L3)  | <u>(</u><br>l<br>v<br><u>E</u> |
| HIGH   | High risk information (Level 4) would likely cause serious harm to individuals or the University if disclosed or compromised.                                    | ► High Risk Systems (L4)  | F                              |





## Login and access

### Cannon

### FASSE

#### IQSS Cannon Quickstart Guide

Home > IQSS Sid > IQSS Cannon Quickstart Guide

#### What is Cannon?

Cannon is the Faculty of Arts and Sciences research computing cluster for users with Data Security Level 2 data. This guide explains how to begin using Cannon. If you have Data Security Level 3 data, you must use the FAS Secure Environment (FASSE) cluster.

Fun fact: Cannon is named after the early 20th century Harvard astronomer Annie Jump Cannon.

#### Pre-requisite steps

Get set up on FASRC:

1. Get a FASRC account
 1. Important: Be sure to request "FASRC Cluster Access" on the "Services" page
 2. Set your FASRC password
 3. Configure 2FA
 4. Configure VPN

#### **IQSS FASSE Quickstart Guide**

Home > IQSS Sid > IQSS FASSE Quickstart Guide

#### What is FASSE?

FASSE is the Faculty of Arts and Sciences Secure Environment research computing cluster. FASSE is available for users with Data Security Level 3 data. This guide explains how to begin using FASSE.

#### Pre-requisite steps

Get an account on FASSE: https://docs.rc.fas.harvard.edu/kb/get-a-fasse-account-and-project-group/





# What is Open OnDemand?

- Open source web portal to access clusters
- Web-based, no software needs be installed on your local machine (except for a modern browser like Google Chrome, Mozilla Firefox)
- Easy to use and simple to learn
- Very similar to desktop applications
- The easiest way to run GUI applications remotely on a cluster
- Individual applications, remote desktop, shell, file browser





# OOD on Cannon and FASSE

### Cannon

| Interactive Ap | ps                                          |                                                          | •                             |
|----------------|---------------------------------------------|----------------------------------------------------------|-------------------------------|
| Abagus FEA     | Comsol Multiphysics<br>System Installed App | Jupyter notebook /<br>Jupyterlab<br>System Installed App | Matlab<br>System Installed Ap |
| Postgresql db  | RStudio<br>RStudio Server                   | Remote Desktop<br>System Installed App                   | System Installed Ap           |

#### FASSE

| FAS Research Computing<br>Harvard University<br>Faculty of Arts & Sciences Clusters * | Files - Jobs - Interact   | ive Apps 👻 🗐 My Interactive Sessions |                            | <ul> <li>Help</li> </ul> |
|---------------------------------------------------------------------------------------|---------------------------|--------------------------------------|----------------------------|--------------------------|
|                                                                                       | atured subset of all avai | lable apps                           |                            |                          |
| Interactive                                                                           | e Apps                    |                                      |                            | _                        |
| Jupyter notebook /                                                                    | Matlab                    | Postgresql db                        | R Studio<br>RStudio Server |                          |
| Jupyterlab<br>System Installed App                                                    | System Installed          |                                      | System Installed App       |                          |
| $\Box$                                                                                | SSS                       |                                      |                            |                          |
| Remote Desktop<br>System Installed App                                                | SAS<br>System Installed   | Stata App System Installed App       |                            |                          |

https://fasseood.rc.fas.harvard.edu/pun/sys/dashboard

Stata System Installed App





# Jupyter Notebook

You can create your own kernels using conda AND command line

- 1. Connect to cluster via ssh using command line: <u>https://docs.rc.fas.harvard.edu/kb/terminal-access/</u>
- 2. Create conda environment with packages that you need: <u>https://docs.rc.fas.harvard.edu/kb/python/</u>
- Install package ipykernel so you can see the conda environment in Jupyter Notebook: <u>https://docs.rc.fas.harvard.edu/kb/ood-remote-desktop-how-to-open-software/</u> <u>#optional Creating and loading a conda environment</u>
- 4. Launch new Jupyter Notebook session
- 5. Select the newly create conda environment (kernel)



# RStudio Server vs. RStudio Desktop

### **RStudio Server**

- Go-to RStudio application with many precompiled R packages
- Cannot set R\_LIBS\_USER
- R\_LIBS\_USER is set to ~/R/ifxrstudio/\<IMAGE\_TAG\>
- Cannot use module load
- Cannot use slurm commands (e.g. sbatch)

### RStudio Desktop

- Highly customized environment
- Can set R\_LIBS\_USER
- Can use module load → you can set specific compilers (e.g. openmpi, gcc)
- Can use slurm commands (e.g. sbatch)

Documentation: <u>https://docs.rc.fas.harvard.edu/kb/rstudio-server-vs-rstudio-desktop/</u>





## Stata

- Stata can be run from the Open on Demand/VDI interface
- Documentation: <u>https://docs.rc.fas.harvard.edu/kb/stata-on-cluster/</u>
- On FASSE may need to have proxy settings changed for loading certain HTTP-only libraries
  - if you set httpproxy on, make sure to set httpproxy off before you end the session





# Remote Desktop app

- It can be used to launch most GUI applications
- How
  - First: load module
  - Second: set environmental variables (not always needed)
  - Third: Launch software
- Documentation:

https://docs.rc.fas.harvard.edu/kb/ood-remote-desktop-how-to-open-software/





# **Request Help - Resources**

- <u>https://docs.rc.fas.harvard.edu/kb/support/</u>
  - Documentation
    - https://docs.rc.fas.harvard.edu/
  - Portal
    - http://portal.rc.fas.harvard.edu/rcrt/submit\_ticket
  - Email
    - rchelp@rc.fas.harvard.edu
  - Office Hours
    - Wednesday noon-3pm https://harvard.zoom.us/j/255102481
  - Consulting Calendar
    - https://www.rc.fas.harvard.edu/consulting-calendar/
  - Training
    - https://www.rc.fas.harvard.edu/upcoming-training/





## **Extra slides**





# Login & Access - Connect to Cannon

Once you have an account you can use the Terminal to connect to Cannon

- Mac: Terminal
- 🗴 Linux: Xterm or Terminal
- Windows: SSH client Putty or Bash Emulator Git Bash

\$ ssh username@login.rc.fas.harvard.edu

- ssh stands for Secure SHell
- ssh is a protocol for data transfer that is secure, i.e the data is encrypted as it travels between your computer and the cluster (remote computer)
- Commonly used commands that use the ssh protocol for data transfer are, scp and sftp





# Command line vs. OOD

### Command line

- Pros
  - Very efficient for experienced users
  - Good for large-scale job submission and data processing
- Cons
  - Very steep learning curve
  - No GUI

Pros

- Simple
- GUI
- Similar to desktop applications

OOD

- Cons
  - Not as efficient as command line
  - (Mostly) limited to single node jobs