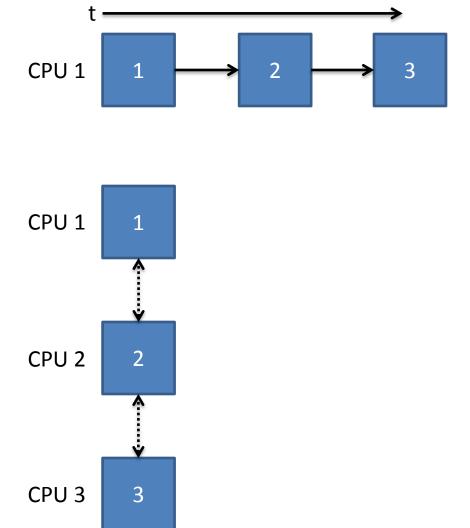
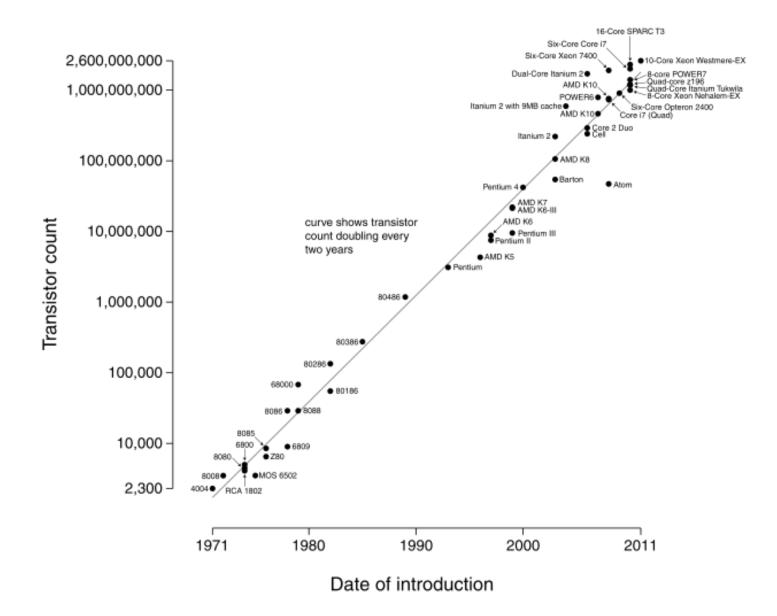
Introduction to Parallel Programming and MPI

Paul Edmon FAS Research Computing Harvard University

Outline

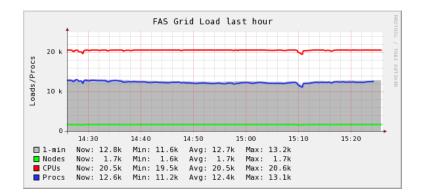

• What is parallel computing?

• Theory

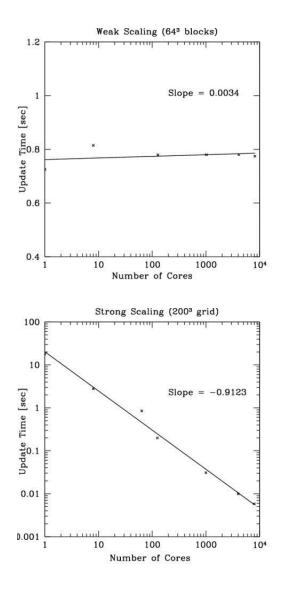

• Message Passing Interface

Parallel vs. Serial

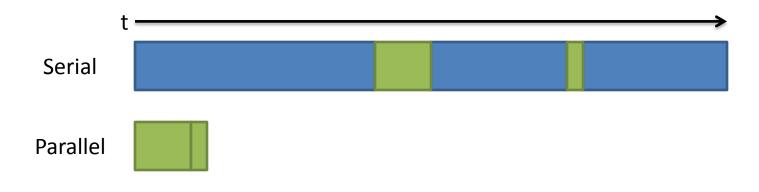
- Serial: A logically sequential execution of steps. The result of next step depends on the previous step.
- Parallel: Steps can be contemporaneously and are not immediately interdependent or are mutually exclusive.


Microprocessor Transistor Counts 1971-2011 & Moore's Law

High Performance Computing (HPC)


- Goal: Leverage as much computer power as possible with as much efficiency as possible to solve problems that cannot be solve by conventional means
- Sub Types
 - Algorithm and Single Chip Efficiency
 - High Throughput Computing
 - High I/O Computing
 - Tightly Coupled Parallel Computing

Scaling


- Weak Scaling
 - Keep the size of the problem per core the same, but keep increasing the number of cores.
 - Ideal: Amount of time to solution should not change
- Strong Scaling
 - Keep the total size of the problem the same but keep increasing the number of cores.
 - Ideal: Time to completion should scale linearly with the number of cores
- Reasons for Deviation
 - Communications Latency
 - Blocking Communications
 - Non-overlapped communications and computation.
 - Not enough computational work

Amdahl's Law

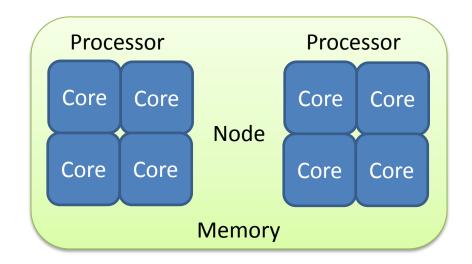
• The maximum you can speed up any code is limited by the amount that can be effectively parallelized.

• In other words: You are limited by the mandatory serial portions of your code.

Types of Parallelization

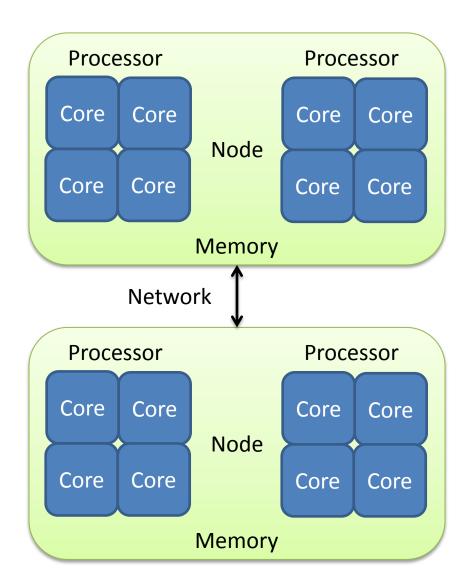
• SIMD

• Thread


• Multinode

SIMD

- Single Instruction Multiple Data
- Vectorization
 - A(:)=B(:)+C(:)
- Processors natively do this, compilers optimize for it.
 - SSE (Streaming SIMD Extensions): 128 bit register, a=a+b
 - AVX (Advanced Vector Extensions): 128 bit register, a=a+b -> 256 bit register a=b+c
- Note on Optimization Flags:
 - -00: No optimization
 - -O1: Safe optimization
 - O2: Mostly Safe optimization
 - - O3: Aggressive optimization
- Always check your answers after your optimize to make sure that you get the same answer back. This is true for any time you recompile or build on a new system. If there are differences make sure they are minor with respect to your expected code outcome.


Thread

- Single Node, program is broken up into threads
- Libraries: OpenMP, pThreads, Cilk
- SMP: Symmetric multiprocessing
- Threads have access to the same memory pool and thus do not have to communicate

Multinode

- Program is broken up into ranks, each rank runs a part of the code
- Ranks run on multiple nodes
- Ranks do not share memory so they must communicate with each to share information
- Libraries: MPI

Is my code parallelizable?

- Does it have large loops that repeat the same commands?
- Does your code do multiple tasks that are not dependent one another? If so is the dependency weak?
- Can any dependencies or information sharing be overlapped with computation? If not is the amount communications small?
- Do multiple tasks depend on the same data?
- Does the order of operations matter? If so how strict does it have to be?

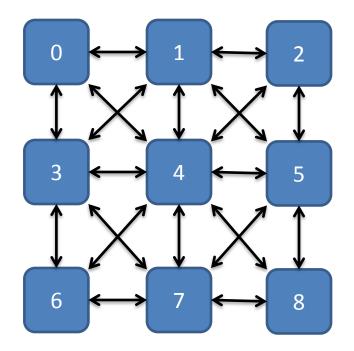
Examples

- Computational Fluid Dynamics
- N-Body and NAMD
- Radiative Transfer and Image Processing
- Markov Chain Monte Carlo
- Embarrassingly Parallel Work

General Guidelines for Parallelization

- Is it even worth parallelizing my code?
 - Does your code take an intractably long amount of time to complete?
 - Do you run single large models or do statistics on multiple small runs?
 - Would the amount of time it take to parallelize your code be worth the gain in speed?
- Parallelizing Established Code vs. Starting from Scratch
 - Established Code: May be easier/faster to do, but may not give good performance or scaling
 - Start from Scratch: Takes longer but will give better performance, accuracy, and gives opportunity to turn a black box code into a code you understand
- Test, test, test, etc.
- Use Nonblocking Communications as often as possible
- Overlap Communications with Computation
- Limit synchronization barriers

General Guidelines for Parallelization


- Limit Collective Communications
- Make messages small
 - Only send essential information
- Make sure messages are well packaged
 - Do one large send with data in a buffer rather than multiple sends
- Use MPI_Iprobe to grease the wheels of nonblocking communications
- Always post nonblocking receives before sends
- Watch out for communications deadlocks
- Be careful of your memory overhead
- Be careful of I/O
 - Avoid having all the cores write to disk at once
 - Alternately don't have all I/O go through one rank.

General Guidelines for Parallelization

- Do as much as is possible asynchronously
- See if some one has parallelized a code similar to yours and look at what they did
- Beware of portions of the code that depend on order of operations
- Avoid gratuitous IF statements
- Do not use GOTO unless absolutely necessary
- KISS: Keep it simple stupid.
- Print statements are your friend for debugging
- So is replicating the problem on a small number of ranks
- Think at scale

Message Passing Interface

- MPI standard: Set by MPI Forum
- Current full standard is MPI-2
 - MPI-3 is in the works which includes nonblocking collectives
- MPI allows the user to control passing data between processes through well defined subroutines
- API: C, C++, Fortran
- Libraries: C#, Java, Python, R
- MPI is "agnostic" about network architecture, all it cares is that the location that is being run on can be addressed by whatever transport method you are using

MPI Nomenclature

- Rank: The ID of a process, starts counting from 0
- Handle: The unique ID for the communication that is being done
- Buffer: An array or string, either controlled by the user or MPI, which is being transported
- Core: An individual compute element
- Node: A collection of compute elements that share the same network address, share memory, and are typically on the same main board
- Hostfile: The list of hosts you will be running on
- MPI Fabric: The communications network MPI constructs either by itself or using a daemon
- Blocking: Means the communications subroutine waits for the completion of the routine before moving on.
- Collective: All ranks talk to everyone else to solve some problem.

Available MPI Compilers on Odyssey

- OpenMPI
 - Open Source project
 - No daemon required
 - Supports MPI-2
 - Even releases are stable, odd releases are development
- MVAPICH2
 - Ohio State University project
 - Old versions require daemon, Latest version does not require daemon
 - MPI-2.2 support as well as some support for MPI-3
- Intel MPI
 - Version of MVAPICH2 optimized by Intel
 - Requires daemon
- All compile for C, C++ and Fortran

MPI Hello World (Fortran/C)

PROGRAM hello

!### Need to include this to be able to hook into the MPI API ### INCLUDE 'mpif.h'

INTEGER*4 :: numprocs, rank, ierr

!### Initializes MPI ### CALL MPI_INIT(ierr)

!### Figures out the number of processors I am asking for ### CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

!### Figures out which rank we are ###
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

write(*,*) 'Process', rank, 'out of', numprocs

!### Need this to shutdown MPI ### CALL MPI_FINALIZE(ierr)

END PROGRAM hello

#include <stdio.h>
 /* Need to include this to be able to hook into the MPI API */
#include <mpi.h>

int main(int argc, char *argv[]) {
 int numprocs, rank;

/* Initializes MPI */
MPI_Init(&argc, &argv);

/* Figures out the number of processors I am asking for */
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

/* Figures out which rank we are */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Process %d out of %d\n", rank, numprocs);

/* Need this to shutdown MPI */ MPI_Finalize();

}

Compiling and Running OpenMPI

module load hpc/o	openmpi-intel-latest	A
intel-compilers-	13.0.079.	
openmpi-intel-lat	test.	
mpif90 hello.f90		
_studio-2013/lib,	/intel64/libimf.so: warning: warning: feupdateenv is not implemented and will always fail	
cat hostfile		
	10	
	mpif90 hello.f90 studio-2013/lib cat hostfile	<pre>mpirum -np 16hostfile hostfile ./a.out 0 out of 16 4 out of 16 2 out of 16 6 out of 16 7 out of 16 1 out of 16 9 out of 16 4 out of 16 5 out of 16 5 out of 16 5 out of 16 8 out of 16 3 out of 16 3 out of 16 1 out of 16 </pre>

Compiling and Running in other versions of MPI

MVAPICH2: Same as OpenMPI but hostfile is different
 – OpenMPI: hostname slots=8

– MVAPICH: hostname:8

- Intel MPI: Same as MVAPICH2 but you first need to start the daemon using the following line
 - mpdboot –f hostfile –n 2
 - mpirun –np 16 ./a.out
 - Where n in this is the number of nodes

Stay tuned

- Next presentation by Plamen will cover more complex topics such as:
 - MPI Collectives
 - Point to Point Communications
 - Asynchronous Communications
 - MPI and non-C and non-Fortran codes
 - I/O in Parallel Environments