
Performing Biology Research
 on the Odyssey Cluster

Amir Karger
Life Sciences Research Computing

rchelp@fas.harvard.edu
http://software.rc.fas.harvard.edu/training/bio_cluster

Outline

•  Commercials and Annoying Reminders
•  Cluster: modules, queues, LSF, storage
•  BLAST – serial
•  The Scriptome – simple data munging
•  BLAST – “fake” parallel (Job Array)
•  MrBayes – serial and “really” parallel
•  More software & resources
•  Your questions?

Why?

•  Why computers?
–  Big data sets, hard math, boring repetition

•  Why cluster?
–  High throughput, shared resources
–  Run jobs in parallel (different kinds of parallel)

•  Why Research Computing?
–  Knowledge (computer geeks who know science)
–  Experience (we’ve made mistakes already)
–  We worry about computers so you can do biology

•  Backup, security, software installation, network, data analysis

Talk to us!

•  Talk to us before you do lots of work
•  Save time

–  We can automate, make code run faster

•  Save effort
–  Maybe we’ve worked on a similar problem before?
–  Or we know someone else who has?

•  Do better science?
–  A more appropriate program, an overlooked parameter

•  This is the most important slide of the day

Annoying Reminders

•  Tickets
–  Research questions to rchelp@fas.harvard.edu
–  Other questions to help@fas.harvard.edu
–  Put individual RC staff in the message if you want

•  Don’t share cluster passwords
–  Really.
–  Not even with us.

•  FAQ etc.: http://rc.fas.harvard.edu
•  Class site:

http://isites.harvard.edu/icb/icb.do?keyword=k60501

Cluster Vocabulary and Usage

•  Node: one computer in the cluster
•  Head node: iliadaccess01, 02, 03

–  If you ssh/PuTTY/Terminal/sftp to odyssey.fas, you get here
–  Do not run long programs here (They’ll die)
–  Do submit (long or short) jobs from here

•  Interactive nodes: bsub -q interact -Is bash
–  good for testing 5-minute runs, interactive Matlab
–  Don’t submit new jobs from here. “exit” and submit from head nodes

•  http://rcnx.fas.harvard.edu - graphical cluster login
•  Core: one “processing unit” (sort of)

–  Each node on Odyssey has 2-8 cores, so it can run 2-8 jobs

Storage

•  Lab folders
–  Located in /n, /n/Lab_Folders - stable (maybe backed up)
–  /n/data, /n/data1, /n/nobackup1 or 2, etc. - less stable
–  Often accessible from Windows/Mac (on VPN, but not Wi-fi)
–  Users, Group, LSDIV/Everyone (WWW, …)
–  Your PI can buy backed-up or scratch storage (some free?)

•  Local /scratch on nodes
–  Faster to write temporary output to, some space per node
–  Not visible from head nodes (so copy final output files)

•  Large file transfer
–  http://fta.fas.harvard.edu

Memory

•  Storage: a place to put data files
•  Memory: (RAM) needed to run programs with big

data sets
•  Different nodes have different amounts of

memory
–  bsub -R will let you ask for big memory if you need it

•  Running out of memory can make jobs crash
–  Contact rchelp@fas and forward the LSF crash email

Cluster login - from Windows

•  Login to odyssey.fas.harvard.edu
–  Use PuTTY or SecureCRT
–  Type host name odyssey.fas.harvard.edu (make sure port is 22)
–  Open. Enter password, hit return. Enter fob passcode, hit return
–  SecureCRT only: Set KeyboardInteractive should be the ONLY

checked option on the SSH2 options page

•  You can’t use the same fob
passcode twice

– Even in two different windows!
– Beware lockouts

Cluster login - from Mac

•  Login to odyssey.fas.harvard.edu
–  Use the Terminal application
–  Shell->New Remote Connection, Secure Shell (ssh) service
–  Select server odyssey.fas.harvard.edu (or add it)
–  Enter user name and click Connect
–  Enter password, hit return.
–  Enter fob passcode, hit return

•  You can’t use the same fob passcode twice
–  Even in two different windows!
–  Beware lockouts

Getting Sample Data

•  Work in your home directory or cd to your lab
folder

•  Copy workshop sample data
–  cp -r /n/nobackup2/workshop_bio ./workshop_bio
–  cd workshop_bio

Modules

•  Give you access to new commands
–  Load a module to be able to run BLAST
–  One module may give access to many commands

•  Set environment variables
–  How does BLAST know where to find nr database?

•  Possibly load other modules
–  Parallel MrBayes needs a “run in parallel” module

•  Simplify our life and yours
–  Fewer PATH conflicts, simpler process

Modules Commands

•  module avail
–  What modules are available (Long list!)
–  module avail hpc/bla shrinks the list
–  We’re gradually moving many bio modules to bio/

•  module keyword -i blast
–  Search description (not perfect - ask us)

•  module load hpc/blastall
–  Get functionality
–  module unload may help avoid conflicts

Modules Commands II

•  module list
–  What modules have I loaded?

•  module display hpc/blastall
–  Tells you what the module does
–  (I.e., which environment variables are set, etc.)

•  Automatic module loads at login
–  You can put module load commands at the end of

your ~/.bashrc

Don’t Break the Cluster

•  Submitting > 500 jobs
–  Always try 3-5 jobs first
–  Talk to us the first time you plan to do this

•  echo "useful file" > ~/.lsbatch
–  Makes LSF put temporary output in local /tmp
–  Faster, and keeps you from filling up ~
–  You may first need to (carefully) rm -rf ~/.lsbatch

•  Writing lots of data
–  Your lab folder
–  /n/nobackup*
–  local /scratch (Make sure to copy stuff you need!)

Exercises: Cluster Intro

•  echo "useful file" > ~/.lsbatch
•  Find your lab folder
•  Play with module avail, etc.

–  Find your favorite program (mrbayes, beast, BayesPhylogenies,
velvet, genscan, maq, …)

Running Software X on Odyssey

•  (Email rchelp@fas to download/create a module)
•  Load the appropriate module
module load hpc/something

•  Test: run the program on a tiny example
•  Make a new directory in your lab folder & cd to it
•  Write a bsub script called, say, my_script.bsub

–  Or copy an old one and change it
–  Reproducible science!

•  Submit the job (don’t forget the < sign!)
bsub < my_script.bsub

BLAST on Odyssey

•  cd blast_serial
•  Load the module

–  module load hpc/blastall
–  Also lets you use formatdb, fastacmd

•  Test: run the program on a tiny example
 blastall -p blastn -i Scer_2.fasta -m8 -o
Scer_2.m8 -d ../blastdb/fungi -e 1e-10 -b 25 -v 25

•  What?!

BLAST Options

•  Command-line BLAST is just like the website
 blastall -p blastn -i Scer_2.fasta -m8 -o
Scer_2.m8 -d ../blastdb/fungi -e 1e-10 -b 25 -v 25

•  -p: BLAST type (blastp, blastn, blastx, …)
•  -i: input file (Scer_2.fasta)
•  -o: output file (Scer_2.m8, or Scer_2.blast)
•  -e: Max. E-value (set based on query/db)
•  -d: database (default nr, looks in BLASTDB)
•  -m: output format (see next slide)
•  -b/-v: max hit sequences/alignments per query
•  Many others: “blastall -” gives a summary

BLAST Output Formats

•  -m0 (or no -m option): long text
–  Looks like website, without colors & links

•  -m8: tabular (“hit table”)
–  Throw into Excel, use with the Scriptome

•  -m9: tabular with comments
–  See column names (but harder to script)

•  -m7: XML
–  Long. Used in blast2go tool, e.g.

•  etc.

bsub from the Command Line

•  Just type “bsub” and then the command
bsub blastall -p blastn -i Scer_2.fasta -m8 -o
Scer_2.m8 -d ../blastdb/fungi -e 1e-10 -b 25 -v 25

–  Runs in your default queue (normal_serial? Your lab’s queue?)
–  Better to type bsub -q short_serial blastall -p …

•  bsub flags vs. program flags
–  bsub flags: anything before the program name
–  program flags: anything after the program name

•  Now watch job with bjobs, kill with bkill, etc.

bsub Script

Options to bsub go here.

DON’T put BLAST options here!
Lines starting with # are comments

EXCEPT lines with #BSUB are options to bsub

#BSUB -q short_serial

Command: whatever you would type on command line
blastall -p blastn -i Scer_2.fasta -m8 -o Scer_2.m8

-d ../blastdb/fungi -e 1e-10 -b 25 -v 25

Fancier bsubs

•  Output file: -o (sort of like blastall -o)
–  Send mail despite -o: -N
–  (Otherwise, all the output gets mailed to you!)

•  Error file: -e (NOT like blastall -e)
–  STDERR, “error output” vs. STDOUT, “regular output”

•  Resource request: -R "mem > 15000"
–  Contact RC or man bsub about other -R options

•  Name your job: -J "some name"
–  Also for job arrays

•  Rerunnable (if a machine goes down): -r
–  Does NOT restart if a job dies
–  Careful: always starts from the beginning

bsub Script with Options

Don’t put BLAST options up here!

#BSUB -q short_serial
#BSUB -e blast_simple.err

Make sure to email me at below address

#BSUB -N

#BSUB -u akarger@cgr.harvard.edu

#BSUB -J easy_blast

Whatever you would type on command line

blastall -p blastn -i Scer_2.fasta -m8 -o Scer_2.m8

-d ../blastdb/fungi -e 1e-10 -b 25 -v 25

formatdb

•  cd ../formatdb
•  Format a database for running BLASTS

–  my.fasta è my.nhr, my.nsq, … (or .phr, .psq, …)
–  Now blastall … -d my (if my.n* are in . or BLASTDB)
–  Or full path: -d ~/dir1/dir2/my for ~/dir1/dir2/my.n*
–  Only formatdb once, then BLAST many times

•  Note: RC already has nr, nt, swissprot, …
•  Indexing your database: must have “nice” IDs

formatdb Options

formatdb -p F -o T -t "Fungal ORFs (DNA)" -n
fungi -i fungi_orfs.fasta

•  -p T to format a protein database, -p F for DNA
•  -t Title for the database (use quotes)
•  -n Database name (what you use in blastall -d)
•  -i Input file
•  -o T Index (lets us search database with

fastacmd)
Might need to bsub formatdb for huge databases

fastacmd

•  cd ../fastacmd
•  Get FASTA sequences from a BLAST database

–  fastacmd -d ../blastdb/fungi -s "lcl|Calb--orf19.10,
lcl|Calb--orf19.100"

–  fastacmd -d ../blastdb/fungi -i ids.in -o out.fasta

•  Or get information on the database
–  fastacmd -d ../blastdb/fungi -I
–  Gives title (formatdb -t), size, date created

•  You got fastacmd and formatdb when you
loaded the blastall module

Checkpointing, aka, insurance

•  Checkpoint: save your job every N minutes
–  Extremely useful for three-week jobs
–  Also good if your job gets suspended for a long time
–  Don’t use N < 30 - too big a strain on resources

Checkpoint, save every 60 minutes. Don’t forget ""
#BSUB -k "myblast.ckpt 60 method=blcr"

export LD_PRELOAD=libcr_run.so.0 # Goes BEFORE blastall

blastall …

•  If job dies (or you bkill it), you can restart it
–  Go into the same directory you ran job from originally
–  brestart myblast.ckpt

Exercises: blastall

•  Play with blastall
–  Change the email address in the bsub scripts!
–  Blast one or two input sequences against nr (slow)
–  Try bjobs, bkill, etc.
–  Blast with different E-values
–  Blast with different output formats

•  Play with formatdb
–  Create a one-fungus database from a FASTA file in /n/bluearc/

mol/seq/fungi/ORFs/coding_orf/
–  Or a protein database: /n/bluearc/mol/seq/fungi/ORFs/trans
–  Now you can run blastx

Introducing the Scriptome

•  Biologists need to merge/transform/filter/sort data
–  A lot of data (maybe too big or badly formatted for Excel)
–  Wide variety of formats, questions, …
–  Most biologists aren’t programmers

•  Q: Can non-programmers “munge” data?
•  A: The Scriptome

–  A cookbook of simple “data munging” tools
–  No programming
–  No install (Windows: one-click ActiveState install)
–  (Almost) no memorization or learning

Using the Scriptome

•  sysbio.harvard.edu/csb/resources/computational/scriptome
–  or Google scriptome

•  Using a tool
–  Pick a tool type
–  Browse table of contents to get a tool (or use quickbrowse)
–  Change parameters and filenames as needed
–  Expand code to see how it's done (optional)
–  Cut and paste to command line

•  Find BLAST results with > 96% identity
–  Use column 2, not 3 (first column is 0)

•  Build a protocol (or use an existing one)

Command-Line Scriptome I

•  cd ../scriptome
•  module load bio/hpc_data_tools
•  List all “change” tools on the Scriptome website
Scriptome -t change

•  Run a tool
Scriptome -t change_fasta_to_tab
Scer_redundant.fasta > redundant.tab

Command-Line Scriptome II

•  Program will ask you for parameters, if needed
Scriptome -t choose_cols redundant.tab >
some.tab
–  Voilà! Easy way to get FASTA IDs

•  Or set parameters on command line: scriptable
Scriptome -t choose_cols -p '@cols=(1, -1, 3)'
ordered.tab > reordered.tab

•  ScriptPack (Resources page)
–  Scriptome for your laptop
–  Replace “Scriptome” in commands above with
“ScriptPack”

–  Note: won’t get updated tools from the website

Scriptome Examples

•  Manipulate FASTAs
•  Filter large BLAST result sets
•  Merge gene lists from different experiments
•  Translate IDs between different databases
•  Calculate 9000 orthologs between two species

of Drosophila

•  Contact RC about using Scriptome
–  Or about something Scriptome-ish that Scriptome can’t do

Exercises: Scriptome

•  Remove duplicate sequences from
Scer_redundant.fasta

•  Change FASTA file to tab, then get ID column
(or description colum)

•  Sort ordered.tab by gene start position
•  Protocol: remove sequences < 500 bp
•  Try exercises using command-line, too

BIG Blasts on the Cluster

•  Q. How do I blast 200,000 454 reads against nr?
•  A. “Fake” parallel BLAST

–  Divide input sequences into 10 separate files
–  BLAST each smaller input file on a separate core
–  Running on 10 cores will be almost exactly 10x as fast!

•  Why “fake” parallel?
–  Cores don’t need to talk to each other
–  You could just submit 10 jobs individually
–  Not to be confused with “really” parallel mpiBLAST et al.

•  But we don’t want to submit 100 jobs by hand…

Job Arrays I

•  Job Arrays let you submit N jobs with one bsub
•  bsub -J ”bla[1-10]" submits 10 jobs

–  Job array gets one numeric Job ID
–  bjobs 1234 (or bjobs bla) lists all sub-jobs in job

array 1234
–  bjobs "1234[3]" gets info on third sub-job
–  Quotes are needed for anything with [brackets], to

avoid confusing the shell
•  Similarly, you can bkill a whole array or one job

Job Arrays II

•  In bsub options, %I stands for sub-job index
–  #BSUB -o blast%I.out blastall … yields blast1.out,

blast2.out, etc. for sub-job 1, 2, etc.
–  Also can use %I with bsub’s -e, etc.

•  In program options, use ${LSB_JOBINDEX}
–  In bla.bsub: blastall … -i in_${LSB_JOBINDEX}.fasta
–  Uses in_1.fasta, in_2.fast, etc. for jobs bla[1], bla[2], etc.
–  bsub on command line (not bsub < a.bsub): use \$ instead of $

bsub -N -q short_serial -e bla%I.err
 blastall -i in_\${LSB_JOBINDEX}.fasta

–  (LSF sets environment variable LSB_JOBINDEX for each core)

BLAST Job Array Script

Use serial queue since it’s only “fake” parallel

#BSUB -q short_serial
Run four numbered jobs in job array

#BSUB -J easy_blast[1-4]

#BSUB -u akarger@cgr.harvard.edu

%I will be replaced by 1, 2, etc. in -e and -o

#BSUB -e blast_array%I.err
#BSUB -o blast_array%I.m8

#BSUB -N

${LSB_JOBINDEX} will be replaced by 1, 2, etc.

blastall -p blastn -i Scer_10_${LSB_JOBINDEX}.fasta
-m8 -d ../blastdb/fungi -e 1e-10 -b 25 -v 25

Fake Parallel BLAST - Finally!

•  cd ../blast_parallel
•  Split 40 FASTA sequences (Scer_40.fasta)

 è 4 files: Scer_10_1.fasta, Scer_10_2.fasta, …
Scriptome -t change_split_fasta Scer_40.fasta
–  Parameters are 10 and "Scer_10_NUMBER.fasta"
–  (Put the quotes around the filename to be safe)
–  (Or just cut and paste from the web)

•  Blast each little FASTA against the database
bsub < blast_array.bsub

•  Concatenate resulting output files
cat blast_array*.m8 > blast_40_seqs.m8

MrBayes

•  cd ../mrbayes_serial
•  MrBayes performs phylogenetic analysis

–  Input is a .nex Nexus file

•  Loading the module
–  module load hpc/mrbayes-3.1.2-patched

•  Running mb from command line
–  mb blah.nex

•  bsub from the command line:
–  bsub -q short_serial -J my_mb -o blah.out mb blah.nex

Serial MrBayes Script

Use a serial queue
#BSUB -q short_serial

#BSUB -o mrbayes_serial.out

#BSUB -e mrbayes_serial.err

Send email even though I’m using -o

#BSUB -N

#BSUB -u example@example.com

#BSUB -J mrbayes_job

mb ND4_BAYESinv.nex

What does parallel mean, anyway?

•  Parallel programs use more than one core
–  The program splits up the job, sends a piece to each core, and

collects the results
–  Cores can be on one or more nodes

•  Running parallel programs on Odyssey
–  Load different module (mvapich or openmpi in module name)
–  Use -n option to bsub to say how many cores you’re using
–  Use -a option to say what kind of parallel (mvapich or openmpi)
–  Use mpirun.lsf in the bsub script before the command name
–  Use a program specially written to be parallel (may or may not

have the same name)

Parallel MrBayes

•  cd ../mrbayes_parallel
•  MrBayes has an MPI parallel version

–  Cores talk to each other using Message-Passing Interface
–  4 cores may be 2-3x as fast (depending) as a single core
–  Often have diminishing returns as #nodes grows
–  “Real” parallel compared to BLAST’s “fake” parallel
–  Use #core = #chains

•  Requires a different module
–  hpc/mrbayes-3.1.2-patched_openmpi-1.3.2_intel-11.0.083
–  Runs an mb executable that’s in a different directory
–  So don’t load both mrbayes modules simultaneously

Parallel MrBayes Script

The -a is the important one! Run a parallel openmpi job.
#BSUB -a openmpi

Use a parallel queue this time

#BSUB -q short_parallel

Run on two cores

#BSUB -n 2

#BSUB -o mrbayes_parallel.out

#BSUB -e mrbayes_parallel.err

#BSUB -u example@example.com
mpirun.lsf mb ND4_BAYESinv.nex

Other Bio Programs on Odyssey

•  Phylogenetics
–  BayesPhylogenies, BEAST, BEST, Garli, im, Lamarc, PAML,

PAUP, PHYLIP, PhyML, poy, RaxML

•  Sequence analysis
–  blat, clustalw, EMBOSS, RepeatMasker, t-coffee

•  Next-generation sequencing
–  bowtie/tophat/cufflinks, maq, velvet

•  Molecular dynamics
–  GROMACS, CHARMM

•  Math and programming
–  Matlab, Mathematica, Perl (BioPerl), Python, R (BioConductor)

More Cluster Resources

•  Biological databases
–  /n/bluearc/mol/seq/* (may change soon to /n/bioseq/…)
–  ls -l before using. Some data is old, some updated

•  More info: http://rc.fas.harvard.edu
•  Ask rchelp@fas.harvard.edu:

–  What program(s) to use
–  To install programs not in `module avail`
–  How to use programs effectively
–  How to interpret results (command-line vs. web blast)
–  Before cutting and pasting 1000 cells in Excel
–  Before using 1000 cores for 6 weeks to write 100 terabytes

