
GPU Computing on
FASRC Cluster

https://docs.rc.fas.harvard.edu/kb/gpgpu-computing-on-the-cluster

Cannon Cluster
Compute:
▪ 100,000 compute cores
▪ Cores/node: 8 to 64
▪ Memory/node: 12GB to 512GB (4GB/core)
▪ 2,500,000 NVIDIA GPU cores
Software:
▪ Operating System CentOS 7
▪ Slurm job manager
▪ 1,000+ scientific tools and programs

▪ https://portal.rc.fas.harvard.edu/apps/modules
Interconnect:
▪ 2 underlying networks connecting 3 data centers
▪ TCP/IP network
▪ Low-latency 200 GB/s HDR InfiniBand (IB) and 56 GB/s FDR

IB network:
▪ inter-node parallel computing
▪ fast access to Lustre mounted storage

2

https://portal.rc.fas.harvard.edu/apps/modules

What is GPGPU?
• General-Purpose Graphics Processing Unit (GPGPU) is a graphics processing

unit (GPU) that is programmed for purposes beyond graphics processing, such
as performing computations typically conducted by a Central Processing Unit
(CPU).

3

GPU vs CPU

4

CPU GPU

Central Processing Unit Graphics Processing Unit

Several cores Many cores

Low latency High throughput

Good for serial processing Good for parallel processing

Can do a handful of operations at once Can do thousands of operations at once

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/

Heterogeneous Computing

5

Using GPGPUs
• GPU enabled applications requires a parallel computing

platform and application programming interface (API) that
allows software developers and software engineers to build
algorithms to modify their application and map
compute-intensive kernels to the GPU.

• GPGPU supports several types of memory in a memory
hierarchy for designers to optimize their programs.

• GPGPU memory is used for transferring data between device
and host -- shared memory is an efficient way for threads in
the same block to share their runtime and data.

6

Ways to Accelerate your Applications

7

Drop-in Library: Cublas
CPU version GPU Acceleration

8

// define size

int N = 1 << 20;

// allocate cpu data

x = (float *)malloc(N * sizeof(float));

y = (float *)malloc(N * sizeof(float));

initData(x, y);

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

saxpy(N, 2.0, x, 1, y, 1);

/ define size

int N = 1 << 20;

// allocate GPU memory

cudaMalloc(&d_x, N * sizeof(float));

cudaMalloc(&d_y, N * sizeof(float));

initData(x, y);

// Copy working data from CPU->GPU

cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

// Bring the result back to the CPU

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

OpenACC
• OpenACC (for Open Accelerators) is a programming standard

for parallel computing on accelerators (mostly on NIVDIA GPU).
• It is designed to simplify GPU programming.
• The basic approach is to insert special comments (directives)

into the code so as to offload computation onto GPUs and
parallelize the code at the level of GPU (CUDA) cores.

• It is possible for programmers to create an efficient parallel
OpenACC code with only minor modifications to a serial CPU
code.

9

OpenACC

10
Slide from Jeff Larkin - Nvidia
For more information: https://www.bu.edu/tech/files/2017/04/OpenACC-2017Spring.pdf

Compute Unified Device Architecture (CUDA)
• CUDA platform is a software layer that gives direct access to the GPU's virtual

instruction set and parallel computational elements for the execution of
compute kernels.

• Designed to work with programming languages such as C, C++, and Fortran
• CUDA is an accessible platform, requiring no advanced skills in graphics

programming, and available to software developers through CUDA-accelerated
libraries and compiler directives.

• CUDA-capable devices are typically connected with a host CPU and the host
CPUs are used for data transmission and kernel invocation for CUDA devices.

• The CUDA Toolkit includes GPU-accelerated libraries, a compiler, programming
guides, API references, and the CUDA runtime.

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
11

Using Programming Languages

12
Slide from Jeff Larkin - Nvidia
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

Using GPU’s on FASRC
• NVIDIA Tesla general purpose graphics processing units (GPGPU).
• 15 nodes with 4 V100 per node is available for general use from the gpu partition
• Your lab may have access to other partitions with GPU’s or bought few nodes

– “grep -ri "idreos_parkes" /etc/slurm/slurm.conf”

• Several other nodes with 4 V100 are available in gpu_requeue. These nodes are owned
by various research groups available and may be available when idle.

• FAS members have access to the fas_gpu partition which has 34 nodes with 2xK80s.
• SEAS members has access to few other partitions so visit

https://docs.rc.fas.harvard.edu/kb/seas-compute-resources/

13

sinfo -p idreos_parkes
PARTITION AVAIL TIMELIMIT NODES STATE
NODELIST
idreos_parkes up 7-00:00:00 1 mix holygpu2c1125

Examples and Questions?

https://github.com/fasrc/User_Codes

14

VDI - Open OnDemand
For applications that need a GUI: https://vdi.rc.fas.harvard.edu

Supports:
• Remote Desktop
• Jupyter Notebooks
• Rstudio
• Matlab

Notes:
• Need to be on the RC VPN to use
• Sessions are submitted as jobs on the cluster and thus use fairshare but also

can run on any partition

15

https://vdi.rc.fas.harvard.edu

Request Help - Resources
• https://docs.rc.fas.harvard.edu/kb/support/

– Documentation
• https://docs.rc.fas.harvard.edu/

– Portal
• http://portal.rc.fas.harvard.edu/rcrt/submit_ticket

– Email
• rchelp@rc.fas.harvard.edu

– Office Hours
• Wednesday noon-3pm https://harvard.zoom.us/j/255102481

– Consulting Calendar
• https://www.rc.fas.harvard.edu/consulting-calendar/

– Training
• https://www.rc.fas.harvard.edu/upcoming-training/

https://docs.rc.fas.harvard.edu/kb/support/

